Purpose To demonstrate that unsupervised assessment of abdominal adipose tissue distribution by magnetic resonance imaging (MRI) can be improved by integrating automatic correction of signal inhomogeneities. Materials and Methods Twenty subjects (body mass index [BMI] 23.7-44.0 kg/m2) underwent abdominal (32 slices) MR imaging with a 1.9T Elscint Prestige scanner. Many images were affected by relevant intensity distortions. Unsupervised segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) was performed by a previously validated algorithm exploiting standard fuzzy clustering segmentation. Images were also processed by an improved version of the software, including automatic correction of intensity inhomogeneities. To assess the effectiveness of the two methods SAT and VAT volumes were compared with manual analysis performed by a trained operator. Results Coefficient of variation between manual and unsupervised analysis was significantly improved by inhomogeneities correction in SAT evaluation. Systematic underestimation of SAT was also corrected. A less important performance improvement was found in VAT measurement. Conclusion The results of this study suggest that the compensation of signal inhomogeneities greatly improves the effectiveness of the unsupervised assessment of abdominal fat. Correction of intensity distortions is important in SAT evaluation and less significant in VAT measurement

Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI

Positano V;Santarelli M F;Landini L;Gastaldelli A
2008

Abstract

Purpose To demonstrate that unsupervised assessment of abdominal adipose tissue distribution by magnetic resonance imaging (MRI) can be improved by integrating automatic correction of signal inhomogeneities. Materials and Methods Twenty subjects (body mass index [BMI] 23.7-44.0 kg/m2) underwent abdominal (32 slices) MR imaging with a 1.9T Elscint Prestige scanner. Many images were affected by relevant intensity distortions. Unsupervised segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) was performed by a previously validated algorithm exploiting standard fuzzy clustering segmentation. Images were also processed by an improved version of the software, including automatic correction of intensity inhomogeneities. To assess the effectiveness of the two methods SAT and VAT volumes were compared with manual analysis performed by a trained operator. Results Coefficient of variation between manual and unsupervised analysis was significantly improved by inhomogeneities correction in SAT evaluation. Systematic underestimation of SAT was also corrected. A less important performance improvement was found in VAT measurement. Conclusion The results of this study suggest that the compensation of signal inhomogeneities greatly improves the effectiveness of the unsupervised assessment of abdominal fat. Correction of intensity distortions is important in SAT evaluation and less significant in VAT measurement
2008
Istituto di Fisiologia Clinica - IFC
abdominal fat
image processing
File in questo prodotto:
File Dimensione Formato  
prod_23980-doc_55541.pdf

solo utenti autorizzati

Descrizione: Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI
Dimensione 637.08 kB
Formato Adobe PDF
637.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/46074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact