A sensitive and selective electrochemical sensor, based on reduced graphene oxide and gold nanoparticles obtained by simple co-electrodeposition, was developed for the detection of uric acid and ascorbic acid. Because of the electrochemical oxidation of both uric and ascorbic acid depending on the pH, the sensor performances were studied at different pH values. Excellent results were obtained for uric acid detection in a linear range from 10 to 500 mu mol dm(-3) with a sensitivity of 0.31 mu A cm(-2) mu M-1. A limit of detection and quantification of 3.6 mu M and 10.95 mu mol dm(-3), respectively, was calculated. Sensors showed good selectivity toward different interfering species present in the matrix of milk, fruit juice and urine (Na+, NH4+, Cl- and glucose). A simultaneous detection of uric acid and ascorbic acid was also carried out reaching a limit of detection of 2.26 and 5.63 mu mol dm(-3), respectively. Sensors were also validated measuring both acids in real samples of foods and body fluids (commercial milk and fruit juice and urine). Excellent results were achieved in good agreement with conventional techniques. (C) 2021 Elsevier Ltd. All rights reserved.

Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors

Torino Claudia;Vilasi Antonio;
2021

Abstract

A sensitive and selective electrochemical sensor, based on reduced graphene oxide and gold nanoparticles obtained by simple co-electrodeposition, was developed for the detection of uric acid and ascorbic acid. Because of the electrochemical oxidation of both uric and ascorbic acid depending on the pH, the sensor performances were studied at different pH values. Excellent results were obtained for uric acid detection in a linear range from 10 to 500 mu mol dm(-3) with a sensitivity of 0.31 mu A cm(-2) mu M-1. A limit of detection and quantification of 3.6 mu M and 10.95 mu mol dm(-3), respectively, was calculated. Sensors showed good selectivity toward different interfering species present in the matrix of milk, fruit juice and urine (Na+, NH4+, Cl- and glucose). A simultaneous detection of uric acid and ascorbic acid was also carried out reaching a limit of detection of 2.26 and 5.63 mu mol dm(-3), respectively. Sensors were also validated measuring both acids in real samples of foods and body fluids (commercial milk and fruit juice and urine). Excellent results were achieved in good agreement with conventional techniques. (C) 2021 Elsevier Ltd. All rights reserved.
2021
Electrochemical sensor
Ascorbic acid
Uric acid, Food
Body fluids
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact