We investigate a model bioassay in a liquid environment using a z-scanning planar Yagi-Uda antenna, focusing on the fluorescence collection enhancement of ATTO-647N dye conjugated to DNA (deoxyribonucleic acid) molecules. The antenna changes the excitation and the decay rates and, more importantly, the emission pattern of ATTO-647N, resulting in a narrow emission angle (41°) and improved collection efficiency. We efficiently detect immobilized fluorescently-labeled DNA molecules, originating from solutions with DNA concentrations down to 1 nM. In practice, this corresponds to an ensemble of fewer than 10 ATTO-647N labeled DNA molecules in the focal area. Even though we use only one type of biomolecule and one immobilization technique to establish the procedure, our method is versatile and applicable to any immobilized, dye-labeled biomolecule in a transparent solid, air, or liquid environment.
Biosensing with a scanning planar Yagi-Uda antenna
Agio M;
2022
Abstract
We investigate a model bioassay in a liquid environment using a z-scanning planar Yagi-Uda antenna, focusing on the fluorescence collection enhancement of ATTO-647N dye conjugated to DNA (deoxyribonucleic acid) molecules. The antenna changes the excitation and the decay rates and, more importantly, the emission pattern of ATTO-647N, resulting in a narrow emission angle (41°) and improved collection efficiency. We efficiently detect immobilized fluorescently-labeled DNA molecules, originating from solutions with DNA concentrations down to 1 nM. In practice, this corresponds to an ensemble of fewer than 10 ATTO-647N labeled DNA molecules in the focal area. Even though we use only one type of biomolecule and one immobilization technique to establish the procedure, our method is versatile and applicable to any immobilized, dye-labeled biomolecule in a transparent solid, air, or liquid environment.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_477843-doc_195584.pdf
accesso aperto
Descrizione: Biosensing with a scanning planar Yagi-Uda antenna
Tipologia:
Versione Editoriale (PDF)
Dimensione
3.68 MB
Formato
Adobe PDF
|
3.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


