Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system response to an external perturbation. In the low-temperature regime we reproduce the recent measurements [Phys. Rev. Lett. 124, 240403 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.240403] of the first sound velocity, which, due to the decoupling of density and entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results.

Propagation of first and second sound in a two-dimensional Fermi superfluid

Salasnich L
2021

Abstract

Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system response to an external perturbation. In the low-temperature regime we reproduce the recent measurements [Phys. Rev. Lett. 124, 240403 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.240403] of the first sound velocity, which, due to the decoupling of density and entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results.
2021
Istituto Nazionale di Ottica - INO
LIQUID-HELIUM; GAS; BCS
File in questo prodotto:
File Dimensione Formato  
prod_477925-doc_195659.pdf

solo utenti autorizzati

Descrizione: Propagation of first and second sound in a two-dimensional Fermi superfluid
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 661.51 kB
Formato Adobe PDF
661.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact