We prove the applicability of the Weighted Energy-Dissipation (WED)variational principle to nonlinear parabolic stochastic partial differentialequations in abstract form. The WED principle consists in theminimization of a parameter-dependent convex functional on entiretrajectories. Its unique minimizers correspond to elliptic-in-time regularizationsof the stochastic differential problem. As the regularizationparameter tends to zero, solutions of the limiting problem are recovered.This in particular provides a direct approach via convex optimizationto the approximation of nonlinear stochastic partialdifferential equations.

Stochastic PDEs via convex minimization

U Stefanelli
2021

Abstract

We prove the applicability of the Weighted Energy-Dissipation (WED)variational principle to nonlinear parabolic stochastic partial differentialequations in abstract form. The WED principle consists in theminimization of a parameter-dependent convex functional on entiretrajectories. Its unique minimizers correspond to elliptic-in-time regularizationsof the stochastic differential problem. As the regularizationparameter tends to zero, solutions of the limiting problem are recovered.This in particular provides a direct approach via convex optimizationto the approximation of nonlinear stochastic partialdifferential equations.
2021
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Elliptic regularization; stochastic partial differential equations; variational method; weighted energy-dissipation principle
File in questo prodotto:
File Dimensione Formato  
prod_485924-doc_201456.pdf

accesso aperto

Descrizione: Stochastic PDEs via convex minimization
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/461164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact