Starting from known results about the number of possible values for the permanents of $(0,1)$-circulant matrices with three nonzero entries per row, and whose dimension $n$ is prime, we prove corresponding results for $n$ power of a prime, $n$ product of two distinct primes, and $n=2\cdot 3^h$. Supported by some experimental results, we also conjecture that the number of different permanents of $n\times n$ $(0,1)$-circulant matrices with $k$ nonzero per row is asymptotically equal to $n^{k-2}/k!+O(n^{k-3}).$

On the number of different permanents of some sparse (0,1) circulant matrices

Resta G;
2003

Abstract

Starting from known results about the number of possible values for the permanents of $(0,1)$-circulant matrices with three nonzero entries per row, and whose dimension $n$ is prime, we prove corresponding results for $n$ power of a prime, $n$ product of two distinct primes, and $n=2\cdot 3^h$. Supported by some experimental results, we also conjecture that the number of different permanents of $n\times n$ $(0,1)$-circulant matrices with $k$ nonzero per row is asymptotically equal to $n^{k-2}/k!+O(n^{k-3}).$
2003
Istituto di informatica e telematica - IIT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/46129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact