A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (? h) that originate from genuine tau leptons in the CMS detector against ? h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a ? h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine ? h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient ? h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved ? h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV.
Identification of hadronic tau lepton decays using a deep neural network
Moscatelli F.;Asenov P.
2022
Abstract
A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (? h) that originate from genuine tau leptons in the CMS detector against ? h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a ? h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine ? h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient ? h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved ? h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tumasyan_2022_J._Inst._17_P07023.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


