The paper introduces a new method for visualizing and navigating information in a cultural heritage archive in a simple and intuitive way. The proposed approach employs pre-trained language models to cluster data and create semantic graphs. The creation of multi-layer maps enables deep exploration of archives with large datasets, while the ability to handle multilingual datasets makes it suitable for archives with documents in various languages. These features combine to provide a user-friendly tool that can be adapted to different contexts and provides an overview of archive contents, to allow even non expert users to successfully query the archive.
Intuitive semantic graph tool for enhanced archive exploration
Isabella Gagliardi;Maria Teresa Artese
2023
Abstract
The paper introduces a new method for visualizing and navigating information in a cultural heritage archive in a simple and intuitive way. The proposed approach employs pre-trained language models to cluster data and create semantic graphs. The creation of multi-layer maps enables deep exploration of archives with large datasets, while the ability to handle multilingual datasets makes it suitable for archives with documents in various languages. These features combine to provide a user-friendly tool that can be adapted to different contexts and provides an overview of archive contents, to allow even non expert users to successfully query the archive.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.