In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances.

Adaptive solution of infinite linear systems by Krylov subspace methods

Favati P;
2007

Abstract

In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances.
2007
Istituto di informatica e telematica - IIT
Infinite linear systems
iterative methods
Krylov subspace methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/46200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact