Functionally graded materials (FGMs), possessing properties that vary smoothly from one region to another,have been receiving increasing attention in recent years, particularly in the aerospace, automotive andbiomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potentialof FGMs in the context of drug delivery, where the unique material characteristics offer the potential of finetuningdrug-release for the desired application. Specifically, we develop a mathematical model of drug releasefrom a thin film FGM, based upon a spatially-varying drug diffusivity. We demonstrate that, depending on thefunctional form of the diffusivity (related to the material properties) a wide range of drug release profilesmay be obtained. Interestingly, the shape of these release profiles are not, in general, achievable from ahomogeneous medium with a constant diffusivity.
Modelling smart drug release with functionally graded materials
Gabriella BrettiPrimo
;Giuseppe Pontrelli
Ultimo
2023
Abstract
Functionally graded materials (FGMs), possessing properties that vary smoothly from one region to another,have been receiving increasing attention in recent years, particularly in the aerospace, automotive andbiomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potentialof FGMs in the context of drug delivery, where the unique material characteristics offer the potential of finetuningdrug-release for the desired application. Specifically, we develop a mathematical model of drug releasefrom a thin film FGM, based upon a spatially-varying drug diffusivity. We demonstrate that, depending on thefunctional form of the diffusivity (related to the material properties) a wide range of drug release profilesmay be obtained. Interestingly, the shape of these release profiles are not, in general, achievable from ahomogeneous medium with a constant diffusivity.File | Dimensione | Formato | |
---|---|---|---|
prod_485424-doc_201082.pdf
accesso aperto
Descrizione: Modelling smart drug release with functionally graded materials
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.63 MB
Formato
Adobe PDF
|
2.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.