Functionally graded materials (FGMs), possessing properties that vary smoothly from one region to another, have been receiving increasing attention in recent years, particularly in the aerospace, automotive and biomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potential of FGMs in the context of drug delivery, where the unique material characteristics offer the potential of finetuning drug-release for the desired application. Specifically, we develop a mathematical model of drug release from a thin film FGM, based upon a spatially-varying drug diffusivity. We demonstrate that, depending on the functional form of the diffusivity (related to the material properties) a wide range of drug release profiles may be obtained. Interestingly, the shape of these release profiles are not, in general, achievable from a homogeneous medium with a constant diffusivity.

Modelling smart drug release with functionally graded materials

Gabriella Bretti;Giuseppe Pontrelli
2023

Abstract

Functionally graded materials (FGMs), possessing properties that vary smoothly from one region to another, have been receiving increasing attention in recent years, particularly in the aerospace, automotive and biomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potential of FGMs in the context of drug delivery, where the unique material characteristics offer the potential of finetuning drug-release for the desired application. Specifically, we develop a mathematical model of drug release from a thin film FGM, based upon a spatially-varying drug diffusivity. We demonstrate that, depending on the functional form of the diffusivity (related to the material properties) a wide range of drug release profiles may be obtained. Interestingly, the shape of these release profiles are not, in general, achievable from a homogeneous medium with a constant diffusivity.
2023
Istituto Applicazioni del Calcolo ''Mauro Picone''
drug delivery
smart materials
mathematical models
numerical methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/462034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact