In this paper we provide explicit upper and lower bounds on certain L-2 n-widths, i.e., best constants in L-2 approximation. We further describe a numerical method to compute these n-widths approximately and prove that this method is superconvergent. Based on our numerical results we formulate a conjecture on the asymptotic behaviour of the n-widths. Finally, we describe how the numerical method can be used to compute the breakpoints of the optimal spline spaces of Melkman and Micchelli, which have recently received renewed attention in the field of isogeometric analysis.

On best constants in L^2 approximation

A Bressan;
2021

Abstract

In this paper we provide explicit upper and lower bounds on certain L-2 n-widths, i.e., best constants in L-2 approximation. We further describe a numerical method to compute these n-widths approximately and prove that this method is superconvergent. Based on our numerical results we formulate a conjecture on the asymptotic behaviour of the n-widths. Finally, we describe how the numerical method can be used to compute the breakpoints of the optimal spline spaces of Melkman and Micchelli, which have recently received renewed attention in the field of isogeometric analysis.
2021
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
eigenvalueseigenfunctionsn-widthssplinesisogeometric analysistotal positivityGreen's functions
File in questo prodotto:
File Dimensione Formato  
prod_485474-doc_201125.pdf

solo utenti autorizzati

Descrizione: On best constants in L^2 approximation
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 461.26 kB
Formato Adobe PDF
461.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_485474-doc_201126.pdf

accesso aperto

Descrizione: On best constants in L^2 approximation
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 340.92 kB
Formato Adobe PDF
340.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/462084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact