In this paper we provide explicit upper and lower bounds on certain L-2 n-widths, i.e., best constants in L-2 approximation. We further describe a numerical method to compute these n-widths approximately and prove that this method is superconvergent. Based on our numerical results we formulate a conjecture on the asymptotic behaviour of the n-widths. Finally, we describe how the numerical method can be used to compute the breakpoints of the optimal spline spaces of Melkman and Micchelli, which have recently received renewed attention in the field of isogeometric analysis.
On best constants in L^2 approximation
A Bressan;
2021
Abstract
In this paper we provide explicit upper and lower bounds on certain L-2 n-widths, i.e., best constants in L-2 approximation. We further describe a numerical method to compute these n-widths approximately and prove that this method is superconvergent. Based on our numerical results we formulate a conjecture on the asymptotic behaviour of the n-widths. Finally, we describe how the numerical method can be used to compute the breakpoints of the optimal spline spaces of Melkman and Micchelli, which have recently received renewed attention in the field of isogeometric analysis.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_485474-doc_201125.pdf
solo utenti autorizzati
Descrizione: On best constants in L^2 approximation
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
461.26 kB
Formato
Adobe PDF
|
461.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_485474-doc_201126.pdf
accesso aperto
Descrizione: On best constants in L^2 approximation
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
340.92 kB
Formato
Adobe PDF
|
340.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.