In this manuscript we propose a numerical method for non-linear integro-differential systems arising in age-of-infection models in a heterogeneously mixed population. The discrete scheme is based on direct quadrature methods and provides an unconditionally positive and bounded solution. Furthermore, we prove the existence of the numerical final size of the epidemic and show that it tends to its continuous equivalent as the discretization steplength vanishes.

A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing

Pezzella M
;
Vecchio A
2024

Abstract

In this manuscript we propose a numerical method for non-linear integro-differential systems arising in age-of-infection models in a heterogeneously mixed population. The discrete scheme is based on direct quadrature methods and provides an unconditionally positive and bounded solution. Furthermore, we prove the existence of the numerical final size of the epidemic and show that it tends to its continuous equivalent as the discretization steplength vanishes.
2024
Istituto Applicazioni del Calcolo ''Mauro Picone''
Epidemic models
Volterra integro-differential equations
Direct quadrature methods
Dynamical preservation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168927423001022-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 459.3 kB
Formato Adobe PDF
459.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/462485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact