Coppices are a major potential source of forest biomass in Spain, where they occupy around 4M ha. Quercus coppices are mostly neglected because of their high harvesting costs and the small size of their products. This makes them very interesting to test and compare alternative means for utilizing their resources in an optimized way. Hence, a comparative study of motormanual and mechanized felling and bunching was conducted when thinning dense coppice stands of the two most important oak species in Spain to obtain biomass for bioenergy use. In particular, the study matched chainsaw felling and manual piling against the work of a driveto-tree feller-buncher previously analyzed in the very same sites. Productivity functions for motor-manual felling and piling were fitted for each species. The derived unit cost functions show that the felling-bunching costs are lower for the motor-manual option in stands of both species, particularly for the smaller tree sizes. Nevertheless, when the strongly reduced loading times in forwarding associated to the mechanization are taken into account, the total harvesting cost is often lower for the mechanized option. That is true for all tree sizes of Q. ilex, and for trees larger than 13 cm diameter at breast height (DBH) for Q. pyrenaica. Residual stand damage was low to moderate, but always significantly greater for the mechanized option compared with the motormanual one. Soil damage was very low for both alternatives. The stumps experimented significantly greater damages in the mechanized felling and bunching, but further research is needed to determine if those damages have any impact on stump mortality, sprouting capability and future plants vigor. The greater productivity and level of tree damages found in Q. ilex when compared to Q. pyrenaica are likely due to the narrower and lighter crown of the latter.

Operational and Environmental Comparison of Two Felling and Piling Alternatives for Whole Tree Harvesting in Quercus Coppices for Bioenergy Use

Spinelli R;Aminti G;
2023

Abstract

Coppices are a major potential source of forest biomass in Spain, where they occupy around 4M ha. Quercus coppices are mostly neglected because of their high harvesting costs and the small size of their products. This makes them very interesting to test and compare alternative means for utilizing their resources in an optimized way. Hence, a comparative study of motormanual and mechanized felling and bunching was conducted when thinning dense coppice stands of the two most important oak species in Spain to obtain biomass for bioenergy use. In particular, the study matched chainsaw felling and manual piling against the work of a driveto-tree feller-buncher previously analyzed in the very same sites. Productivity functions for motor-manual felling and piling were fitted for each species. The derived unit cost functions show that the felling-bunching costs are lower for the motor-manual option in stands of both species, particularly for the smaller tree sizes. Nevertheless, when the strongly reduced loading times in forwarding associated to the mechanization are taken into account, the total harvesting cost is often lower for the mechanized option. That is true for all tree sizes of Q. ilex, and for trees larger than 13 cm diameter at breast height (DBH) for Q. pyrenaica. Residual stand damage was low to moderate, but always significantly greater for the mechanized option compared with the motormanual one. Soil damage was very low for both alternatives. The stumps experimented significantly greater damages in the mechanized felling and bunching, but further research is needed to determine if those damages have any impact on stump mortality, sprouting capability and future plants vigor. The greater productivity and level of tree damages found in Q. ilex when compared to Q. pyrenaica are likely due to the narrower and lighter crown of the latter.
2023
Istituto per la BioEconomia - IBE
forest operations
work study
environmental effects
feller-buncher
motor-manual cutting
operational cost
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/462594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact