Membrane capacitive deionization (MCDI) has shown many advances, however, its performance in combination with other treatment technologies has not been widely reported. In this study, a pilot-scale low-pressure reverse osmosis (LPRO) (FilmTecTM XLE-2540) with MCDI (CapDI (c) C17, Voltea) was developed and tested as a promising modular desalination system. The systems were evaluated individually at different salinities and tested together as a modular system. The study focused in the comparison to conventional seawater reverse osmosis (SWRO) (FilmTecTM SW30-2540) at pilot-scale and in theory using the software Water Application Value Engine (WAVE, DuPontTM), including a cost evaluation of the systems. Pilot tests were carried out in Can Gio, a riverine estuary region in South Vietnam, which is affected by progressive salinization (TDS approximate to 1-25 g/L). Drinking water quality (TDS < 600 mg/L) was achieved with a specific energy consumption (SEC) of 5.2 kWh/m3. Additionally, fouling mitigation was investigated for the ultrafiltration (UF) pre-treatment by periodic hydraulic and chemical enhanced backwashing. While the SWRO had a slightly lower SEC of 5.0 kWh/m3, WAVE calculations showed that lowering the SEC to 3.6 kWh/m3 is possible by improving the LPRO pump design and an optimization of the MCDI operation.
Modular desalination concept with low-pressure reverse osmosis and capacitive deionization: Performance study of a pilot plant in Vietnam in comparison to seawater reverse osmosis
Figoli Alberto;
2023
Abstract
Membrane capacitive deionization (MCDI) has shown many advances, however, its performance in combination with other treatment technologies has not been widely reported. In this study, a pilot-scale low-pressure reverse osmosis (LPRO) (FilmTecTM XLE-2540) with MCDI (CapDI (c) C17, Voltea) was developed and tested as a promising modular desalination system. The systems were evaluated individually at different salinities and tested together as a modular system. The study focused in the comparison to conventional seawater reverse osmosis (SWRO) (FilmTecTM SW30-2540) at pilot-scale and in theory using the software Water Application Value Engine (WAVE, DuPontTM), including a cost evaluation of the systems. Pilot tests were carried out in Can Gio, a riverine estuary region in South Vietnam, which is affected by progressive salinization (TDS approximate to 1-25 g/L). Drinking water quality (TDS < 600 mg/L) was achieved with a specific energy consumption (SEC) of 5.2 kWh/m3. Additionally, fouling mitigation was investigated for the ultrafiltration (UF) pre-treatment by periodic hydraulic and chemical enhanced backwashing. While the SWRO had a slightly lower SEC of 5.0 kWh/m3, WAVE calculations showed that lowering the SEC to 3.6 kWh/m3 is possible by improving the LPRO pump design and an optimization of the MCDI operation.| File | Dimensione | Formato | |
|---|---|---|---|
|
Luong Figoli Module Desalination 2023.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


