We consider a discrete model of planar elasticity where the particles, in the reference configuration, sit on a regular triangular lattice and interact through nearest-neighbor pairwise potentials, with bonds modeled as linearized elastic springs. Within this framework, we introduce plastic slip fields, whose discrete circulation around each tri-angle detects the possible presence of an edge dislocation. We provide a gamma-convergence analysis, as the lattice spacing tends to zero, of the elastic energy induced by edge dislocations in the energy regime corresponding to a finite number of geometrically necessary dislocations.

Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice

De Luca L;
2023

Abstract

We consider a discrete model of planar elasticity where the particles, in the reference configuration, sit on a regular triangular lattice and interact through nearest-neighbor pairwise potentials, with bonds modeled as linearized elastic springs. Within this framework, we introduce plastic slip fields, whose discrete circulation around each tri-angle detects the possible presence of an edge dislocation. We provide a gamma-convergence analysis, as the lattice spacing tends to zero, of the elastic energy induced by edge dislocations in the energy regime corresponding to a finite number of geometrically necessary dislocations.
2023
Istituto Applicazioni del Calcolo ''Mauro Picone''
Dislocations
Topological singularities
Plasticity
Discrete to continuum limits
Gamma-convergence
File in questo prodotto:
File Dimensione Formato  
prod_483401-doc_199249.pdf

accesso aperto

Descrizione: Coarse-graining of a discrete model for edge dislocations in the triangular lattice
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 368.15 kB
Formato Adobe PDF
368.15 kB Adobe PDF Visualizza/Apri
Alicandro-De-Luca-Lazzaroni-Palombaro-Ponsiglione-JNLS-rivista.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 557.18 kB
Formato Adobe PDF
557.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact