Sewage sludge has fertilizer properties and can supply a large amount of necessary nutrients to the crops, because it is full of organic matter, carbon, nitrogen and other nutrients, but on the other hand, it also contains a lot of toxic compounds, derived from its origin, such as heavy metals, antibiotics and microplastics. Effective microorganisms are a collection of naturally occurring beneficial microorganisms that are able to coexist and are commonly used in agriculture and gardening to improve plant performance and production. In this study, increasing concentrations of sewage sludge alone and added with effective microorganisms were evaluated in a short exposure on Lepidium sativum L. Parameters that were evaluated are: (i) percentage inhibition of germination, (ii) root length, (iii) biomass, (iv) soil pH, (v) total organic carbon and nitrogen both at soil and at root level. Results carried out from our experiment highlighted that effective microorganisms when coupled with sludge are able to restore biometric parameters by resetting seeds germinability inhibition and improving root elongation more than 50% when compared with plants added only with sludge, restoring the values almost of those to the control plants, as well as for soil pH values. Total organic carbon and total nitrogen are boosted at soil level almost at 50% when compared with the same concentrations added only with sludge, while at root level they appear decreased only in plants directly added with sludge treated with effective microorganisms.Clinical Trial Registration This research does not have a Clinical Trial Registration because no humans are been involved.

Effective microorganisms technology applied to sewage sludge and tested in short exposure on Lepidium sativum

Pignattelli S
Ultimo
2023

Abstract

Sewage sludge has fertilizer properties and can supply a large amount of necessary nutrients to the crops, because it is full of organic matter, carbon, nitrogen and other nutrients, but on the other hand, it also contains a lot of toxic compounds, derived from its origin, such as heavy metals, antibiotics and microplastics. Effective microorganisms are a collection of naturally occurring beneficial microorganisms that are able to coexist and are commonly used in agriculture and gardening to improve plant performance and production. In this study, increasing concentrations of sewage sludge alone and added with effective microorganisms were evaluated in a short exposure on Lepidium sativum L. Parameters that were evaluated are: (i) percentage inhibition of germination, (ii) root length, (iii) biomass, (iv) soil pH, (v) total organic carbon and nitrogen both at soil and at root level. Results carried out from our experiment highlighted that effective microorganisms when coupled with sludge are able to restore biometric parameters by resetting seeds germinability inhibition and improving root elongation more than 50% when compared with plants added only with sludge, restoring the values almost of those to the control plants, as well as for soil pH values. Total organic carbon and total nitrogen are boosted at soil level almost at 50% when compared with the same concentrations added only with sludge, while at root level they appear decreased only in plants directly added with sludge treated with effective microorganisms.Clinical Trial Registration This research does not have a Clinical Trial Registration because no humans are been involved.
2023
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Sesto Fiorentino (FI)
Sewage sludge
Effective microorganism
Total organic carbon
Total nitrogen
Germinability
Short plants exposure
Acute toxicity
Biomass
pH
File in questo prodotto:
File Dimensione Formato  
Buh_et_al2023JEST.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact