In this paper, we propose an innovative Federated Learning-inspired evolutionary frame- work. Its main novelty is that this is the first time that an Evolutionary Algorithm is employed on its own to directly perform Federated Learning activity. A further novelty resides in the fact that, differently from the other Federated Learning frameworks in the literature, ours can efficiently deal at the same time with two relevant issues in Machine Learning, i.e., data privacy and interpretability of the solutions. Our framework consists of a master/slave approach in which each slave contains local data, protecting sensible private data, and exploits an evolutionary algorithm to generate prediction models. The master shares through the slaves the locally learned models that emerge on each slave. Sharing these local models results in global models. Being that data privacy and interpretability are very significant in the medical domain, the algorithm is tested to forecast future glucose values for diabetic patients by exploiting a Grammatical Evolution algorithm. The effectiveness of this knowledge-sharing process is assessed experimentally by comparing the proposed framework with another where no exchange of local models occurs. The results show that the performance of the proposed approach is better and demonstrate the validity of its sharing process for the emergence of local models for personal diabetes management, usable as efficient global models. When further subjects not involved in the learning process are considered, the models discovered by our framework show higher generalization capability than those achieved without knowledge sharing: the improvement provided by knowledge sharing is equal to about 3.03% for precision, 1.56% for recall, 3.17% for F1, and 1.56% for accuracy. Moreover, statistical analysis reveals the statistical superiority of model exchange with respect to the case of no exchange taking place.

A Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose Prediction

Ivanoe De Falco;Umberto Scafuri;Ernesto Tarantino
2023

Abstract

In this paper, we propose an innovative Federated Learning-inspired evolutionary frame- work. Its main novelty is that this is the first time that an Evolutionary Algorithm is employed on its own to directly perform Federated Learning activity. A further novelty resides in the fact that, differently from the other Federated Learning frameworks in the literature, ours can efficiently deal at the same time with two relevant issues in Machine Learning, i.e., data privacy and interpretability of the solutions. Our framework consists of a master/slave approach in which each slave contains local data, protecting sensible private data, and exploits an evolutionary algorithm to generate prediction models. The master shares through the slaves the locally learned models that emerge on each slave. Sharing these local models results in global models. Being that data privacy and interpretability are very significant in the medical domain, the algorithm is tested to forecast future glucose values for diabetic patients by exploiting a Grammatical Evolution algorithm. The effectiveness of this knowledge-sharing process is assessed experimentally by comparing the proposed framework with another where no exchange of local models occurs. The results show that the performance of the proposed approach is better and demonstrate the validity of its sharing process for the emergence of local models for personal diabetes management, usable as efficient global models. When further subjects not involved in the learning process are considered, the models discovered by our framework show higher generalization capability than those achieved without knowledge sharing: the improvement provided by knowledge sharing is equal to about 3.03% for precision, 1.56% for recall, 3.17% for F1, and 1.56% for accuracy. Moreover, statistical analysis reveals the statistical superiority of model exchange with respect to the case of no exchange taking place.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
federated learning
evolutionary algorithms
interpretable machine learning
diabetes
File in questo prodotto:
File Dimensione Formato  
prod_479177-doc_196489.pdf

solo utenti autorizzati

Descrizione: A Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose Prediction
Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact