Typical structures of monitoring systems (MSs) that are used in urban complex objects (UCOs) (such as large industrial facilities, power facilities, and others) during the post-accident period are combined with the technologies of flying sensor networks (FSNets) and flying edge networks (FENets) (FSNets and FENets); cloud/fog computing and artificial intelligence are also developed. An FSNets and FENets-based MS, composed of one of the Advanced Air Mobility (AAM) systems classes, which comprise main and virtual crisis centers, fleets of flying sensors, edge nodes, and a ground control station, is presented and discussed. Reliability and survivability models of the MS for the UCOs, considering various operation conditions and options of redundancy, are developed and explored. A tool to support the research on MS reliability, survivability, and the choice of parameters is developed and described. Crucially, this paper enhances the technique for assessing systems using the multi-parametrical deterioration of characteristics as a class of multi-state systems. Problems that may arise when using FSNets/FENet-based AAM systems are discussed. The main research results comprise a structural basis, a set of models, and a tool for calculating the reliability and survivability of FSNets/FENet-based AAM systems, with various options for distributing the processing and control resources between components, their failure rates, and degradation scenarios.

Flying sensor and edge network-based advanced air mobility systems: reliability analysis and applications for urban monitoring

Illiashenko O;
2023

Abstract

Typical structures of monitoring systems (MSs) that are used in urban complex objects (UCOs) (such as large industrial facilities, power facilities, and others) during the post-accident period are combined with the technologies of flying sensor networks (FSNets) and flying edge networks (FENets) (FSNets and FENets); cloud/fog computing and artificial intelligence are also developed. An FSNets and FENets-based MS, composed of one of the Advanced Air Mobility (AAM) systems classes, which comprise main and virtual crisis centers, fleets of flying sensors, edge nodes, and a ground control station, is presented and discussed. Reliability and survivability models of the MS for the UCOs, considering various operation conditions and options of redundancy, are developed and explored. A tool to support the research on MS reliability, survivability, and the choice of parameters is developed and described. Crucially, this paper enhances the technique for assessing systems using the multi-parametrical deterioration of characteristics as a class of multi-state systems. Problems that may arise when using FSNets/FENet-based AAM systems are discussed. The main research results comprise a structural basis, a set of models, and a tool for calculating the reliability and survivability of FSNets/FENet-based AAM systems, with various options for distributing the processing and control resources between components, their failure rates, and degradation scenarios.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Flying sensor network
Flying edge network
Unmanned aerial vehicle
Monitoring system
Reliability
Survivability
Crisis centre
Multi-state system
File in questo prodotto:
File Dimensione Formato  
prod_486054-doc_201564.pdf

accesso aperto

Descrizione: Flying sensor and edge network-based advanced air mobility systems: reliability analysis and applications for urban monitoring
Tipologia: Versione Editoriale (PDF)
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact