Completing the analysis in Scarpa (Math Models Methods Appl Sci 30(5): 991-1031 2020), we investigate the well-posedness of SPDEs problems of doubly nonlinear type. These arise ubiquitously in the modeling of dissipative media and correspond to generalized balance laws between conservative and nonconservative dynamics. We extend the reach of the classical deterministic case by allowing for stochasticity. The existence of martingale solutions is proved via a regularization technique, hinging on the validity of an Ito formula in a minimal regularity setting. Under additional assumptions, the well-posedness of stochastically strong solutions is also shown.

Doubly nonlinear stochastic evolution equations II

U Stefanelli
2023

Abstract

Completing the analysis in Scarpa (Math Models Methods Appl Sci 30(5): 991-1031 2020), we investigate the well-posedness of SPDEs problems of doubly nonlinear type. These arise ubiquitously in the modeling of dissipative media and correspond to generalized balance laws between conservative and nonconservative dynamics. We extend the reach of the classical deterministic case by allowing for stochasticity. The existence of martingale solutions is proved via a regularization technique, hinging on the validity of an Ito formula in a minimal regularity setting. Under additional assumptions, the well-posedness of stochastically strong solutions is also shown.
2023
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Doubly nonlinear stochastic equations
Strong and martingale solutions
Existence
Maximal monotone operators
Generalized Ito's formula
File in questo prodotto:
File Dimensione Formato  
prod_486110-doc_201616.pdf

solo utenti autorizzati

Descrizione: Doubly nonlinear stochastic evolution equations II
Tipologia: Versione Editoriale (PDF)
Dimensione 541.84 kB
Formato Adobe PDF
541.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_486110-doc_201617.pdf

accesso aperto

Descrizione: Doubly nonlinear stochastic evolution equations II
Tipologia: Versione Editoriale (PDF)
Dimensione 383.99 kB
Formato Adobe PDF
383.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact