In this paper we consider the computation of the modified moments for the system of Laguerre polynomials on the real semiaxis with the Hermite weight. These moments can be used for the computation of integrals with the Hermite weight on the real semiaxis via product rules. We propose a new computational method based on the construction of the null-space of a rectangular matrix derived from the three-term recurrence relation of the system of orthonormal Laguerre polynomials.It is shown that the proposed algorithm computes the modified moments with high relative accuracy and linear complexity.Numerical examples illustrate the effectiveness of the proposed method.

On computing modified moments for half-range Hermite weights

Teresa Laudadio
Co-primo
Membro del Collaboration Group
;
Nicola Mastronardi
Co-primo
Membro del Collaboration Group
;
2024

Abstract

In this paper we consider the computation of the modified moments for the system of Laguerre polynomials on the real semiaxis with the Hermite weight. These moments can be used for the computation of integrals with the Hermite weight on the real semiaxis via product rules. We propose a new computational method based on the construction of the null-space of a rectangular matrix derived from the three-term recurrence relation of the system of orthonormal Laguerre polynomials.It is shown that the proposed algorithm computes the modified moments with high relative accuracy and linear complexity.Numerical examples illustrate the effectiveness of the proposed method.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
Null-space
Gaussian quadrature rule
modified moments
product rule
File in questo prodotto:
File Dimensione Formato  
tnp_nUMER_aLGO_24_hALF-RANGE.pdf

accesso aperto

Descrizione: PDF
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 498.26 kB
Formato Adobe PDF
498.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact