PEGylation of protein sulfhydryl residues is a common method used to create a stable drug conjugate to enhance vascular retention times. We recently created a putative haemoglobin-based oxygen carrier using maleimide-PEG to selectively modify a single engineered cysteine residue in the ? subunit (?Ala19Cys). However, maleimide-PEG adducts are subject to deconjugation via retro-Michael reactions, with consequent cross-conjugation to endogenous plasma thiols such as those found on human serum albumin or glutathione. In previous studies mono-sulfone-PEG adducts have been shown to be less susceptible to deconjugation. We therefore compared the stability of our maleimide-PEG Hb adduct with one created using a mono-sulfone PEG. The corresponding mono-sulfone-PEG adduct was significantly more stable when incubated at 37 °C for 7 days in the presence of 1 mM reduced glutathione, 20 mg/mL human serum albumin, or human serum. In all cases haemoglobin treated with mono-sulfone-PEG retained >90% of its conjugation whereas maleimide-PEG showed significant deconjugation, especially in the presence of 1 mM reduced glutathione where <70% of the maleimide-PEG conjugate remained intact. Although maleimide-PEGylation of Hb seems adequate for an oxygen therapeutic intended for acute use, if longer vascular retention is required reagents such as mono-sulfone-PEG may be more appropriate.

Stability of a Novel PEGylation Site on a Putative Haemoglobin-Based Oxygen Carrier

Mozzarelli A;
2022

Abstract

PEGylation of protein sulfhydryl residues is a common method used to create a stable drug conjugate to enhance vascular retention times. We recently created a putative haemoglobin-based oxygen carrier using maleimide-PEG to selectively modify a single engineered cysteine residue in the ? subunit (?Ala19Cys). However, maleimide-PEG adducts are subject to deconjugation via retro-Michael reactions, with consequent cross-conjugation to endogenous plasma thiols such as those found on human serum albumin or glutathione. In previous studies mono-sulfone-PEG adducts have been shown to be less susceptible to deconjugation. We therefore compared the stability of our maleimide-PEG Hb adduct with one created using a mono-sulfone PEG. The corresponding mono-sulfone-PEG adduct was significantly more stable when incubated at 37 °C for 7 days in the presence of 1 mM reduced glutathione, 20 mg/mL human serum albumin, or human serum. In all cases haemoglobin treated with mono-sulfone-PEG retained >90% of its conjugation whereas maleimide-PEG showed significant deconjugation, especially in the presence of 1 mM reduced glutathione where <70% of the maleimide-PEG conjugate remained intact. Although maleimide-PEGylation of Hb seems adequate for an oxygen therapeutic intended for acute use, if longer vascular retention is required reagents such as mono-sulfone-PEG may be more appropriate.
2022
Istituto di Biofisica - IBF
Maleimide-PEG adduct; Mono-sulfone-PEG adduct; Recombinant human hemoglobin; Vascular retention time
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact