The goal of this work is the design and the development of scaffolds based on maltodextrin (MD) to recover chronic lesions. MD was mixed with arginine/lysine/polylysine and the electrospinning was successfully used to prepare scaffolds with uniform and continuous nanofibers having regular shape and smooth surface. A thermal treatment was applied to obtain insoluble scaffolds in aqueous environment, taking the advantage of amino acids-polysaccharide conjugates formed via Maillard-type reaction. The morphological analysis showed that the scaffolds had nanofibrous structures, and that the cross linking by heating did not significantly change the nanofibers' dimensions and did not alter the systemstability. Moreover, the heating process caused a reduction of free amino group and proportionally increased scaffold cross-linking degree. The scaffolds were elastic and resistant to break, and possessed negative zeta potential in physiological fluids. These were characterized by direct antioxidant properties and Fe2+ chelation capability(indirect antioxidant properties). Moreover, the scaffolds were cytocompatible towards fibroblasts and monocytesderived macrophages, and did not show any significant pro-inflammatory activity. Finally, those proved to accelerate the recovery of the burn/excisional wounds. Considering all the features, MD-poly/amino acids scaffolds could be considered as promising medical devices for the treatment of chronic wounds.
Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering
Giulia Suarato;
2022
Abstract
The goal of this work is the design and the development of scaffolds based on maltodextrin (MD) to recover chronic lesions. MD was mixed with arginine/lysine/polylysine and the electrospinning was successfully used to prepare scaffolds with uniform and continuous nanofibers having regular shape and smooth surface. A thermal treatment was applied to obtain insoluble scaffolds in aqueous environment, taking the advantage of amino acids-polysaccharide conjugates formed via Maillard-type reaction. The morphological analysis showed that the scaffolds had nanofibrous structures, and that the cross linking by heating did not significantly change the nanofibers' dimensions and did not alter the systemstability. Moreover, the heating process caused a reduction of free amino group and proportionally increased scaffold cross-linking degree. The scaffolds were elastic and resistant to break, and possessed negative zeta potential in physiological fluids. These were characterized by direct antioxidant properties and Fe2+ chelation capability(indirect antioxidant properties). Moreover, the scaffolds were cytocompatible towards fibroblasts and monocytesderived macrophages, and did not show any significant pro-inflammatory activity. Finally, those proved to accelerate the recovery of the burn/excisional wounds. Considering all the features, MD-poly/amino acids scaffolds could be considered as promising medical devices for the treatment of chronic wounds.File | Dimensione | Formato | |
---|---|---|---|
Ruggeri et al_Biomaterials Advances_2022.pdf
accesso aperto
Descrizione: Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.9 MB
Formato
Adobe PDF
|
5.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.