The behavior of confined suspensions of soft droplets under pressure-driven flow, passing an obstacle within a planar channel, is investigated by means of a mesoscopic lattice Boltzmann model capable of simulating soft non-coalescing droplets. The simulations reveal that the threshold of the pore size, below which the flux vanishes, is between 1 and 2 droplet diameters, and increases with the packing fraction. Moreover, we show that the classical Beverloo relation between the total flux and the pore size is not suitable for the soft suspensions considered here

On the flow of soft suspensions through orifices

Andrea Puglisi;Sauro Succi;
2023

Abstract

The behavior of confined suspensions of soft droplets under pressure-driven flow, passing an obstacle within a planar channel, is investigated by means of a mesoscopic lattice Boltzmann model capable of simulating soft non-coalescing droplets. The simulations reveal that the threshold of the pore size, below which the flux vanishes, is between 1 and 2 droplet diameters, and increases with the packing fraction. Moreover, we show that the classical Beverloo relation between the total flux and the pore size is not suitable for the soft suspensions considered here
2023
Istituto dei Sistemi Complessi - ISC
Soft suspensionsLattice Boltzmann simulations
File in questo prodotto:
File Dimensione Formato  
prod_484073-doc_199909.pdf

accesso aperto

Descrizione: On the flow of soft suspensions through orifices
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/464358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact