Producing solvent-resistant microfluidic devices is a challenge for analytical chemistry and biochemistry. We demonstrate a simple and low-cost fabrication approach for the realization of solvent-resistant microchannels based on perfluoropolyether elastomers, exhibiting very low aspect ratios (0.01). The strength of the microchannels sealing is evaluated through the maximum internal pressure (1.52 MPa) prior to device failure, due to delamination at the bonded interface. This approach allows the elastic properties of silicone elastomers, suitable for high quality external connections, to be combined with the non-swelling character of perfluoropolyethers.

Ultraviolet-based bonding for perfluoropolyether low aspect-ratio microchannels and hybrid devices

Pisignano D
2008

Abstract

Producing solvent-resistant microfluidic devices is a challenge for analytical chemistry and biochemistry. We demonstrate a simple and low-cost fabrication approach for the realization of solvent-resistant microchannels based on perfluoropolyether elastomers, exhibiting very low aspect ratios (0.01). The strength of the microchannels sealing is evaluated through the maximum internal pressure (1.52 MPa) prior to device failure, due to delamination at the bonded interface. This approach allows the elastic properties of silicone elastomers, suitable for high quality external connections, to be combined with the non-swelling character of perfluoropolyethers.
2008
INFM
MICROFLUIDIC DEVICES
SOFT LITHOGRAPHY
FABRICATION
CHIPS
SYSTEMS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/464557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact