Background and aims: Ulcerative colitis (UC) is characterised by refractory inflammatory ulceration and damage to the colon. The mechanisms underlying impaired healing have yet to be defined. As transglutaminase expression resulting in matrix protein cross linking is associated with increased wound healing in a rat model of colitis, we hypothesised that different types of transglutaminase might also play a role in UC. Patients and methods: Endoscopic and histological indices were studied in 26 patients with UC (10 active and 16 inactive) and in 20 normal controls undergoing colonoscopy. Transglutaminase activity was evaluated in plasma (factor XIIIa) by a radioenzymatic method. Factor XIIIa, tissue and keratinocyte transglutaminase protein content, and mRNA expression in the colon were evaluated by western blot analysis and semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Colonic location of transglutaminases and their reaction products, the ƒÕ-(ƒ×-glutamyl)lysine bonds, was evaluated by immunohistochemistry using specific monoclonal antibodies. Results: Transglutaminase activity was significantly lower in the plasma of patients with active UC (4.2 (2.4) mU/ml; p<0.05 v controls) than in those with inactive UC and controls (10.6 (2.2) and 12.1 (1.7) mU/ml). As shown by western blot, protein levels of tissue transglutaminase and factor XIIIa were unchanged in active UC compared with inactive disease and controls, while the keratinocyte form was reduced in active UC. Tissue transglutaminase and factor XIIIa immunostaining was strongly present in damaged areas colocalising with isopeptide bonds. In contrast, the keratinocyte form was almost absent in active UC and localised in the upper part of the crypts in normal subjects. RT-PCR showed upregulation of tissue transglutaminase mRNA in active UC (320% compared with controls) while keratinocyte transglutaminase gene expression was downregulated in active UC. Conclusions: The results of the present study support the concept that, in the damaged colon, transglutaminases are needed in response to chronic injury and underline the key role of these enzymes in mucosal healing.

Differential expression of multiple transglutaminases in human colon: impaired keratinocyte transglutaminase expression in ulcerative colitis

Margarucci S;Peluso G
2005

Abstract

Background and aims: Ulcerative colitis (UC) is characterised by refractory inflammatory ulceration and damage to the colon. The mechanisms underlying impaired healing have yet to be defined. As transglutaminase expression resulting in matrix protein cross linking is associated with increased wound healing in a rat model of colitis, we hypothesised that different types of transglutaminase might also play a role in UC. Patients and methods: Endoscopic and histological indices were studied in 26 patients with UC (10 active and 16 inactive) and in 20 normal controls undergoing colonoscopy. Transglutaminase activity was evaluated in plasma (factor XIIIa) by a radioenzymatic method. Factor XIIIa, tissue and keratinocyte transglutaminase protein content, and mRNA expression in the colon were evaluated by western blot analysis and semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Colonic location of transglutaminases and their reaction products, the ƒÕ-(ƒ×-glutamyl)lysine bonds, was evaluated by immunohistochemistry using specific monoclonal antibodies. Results: Transglutaminase activity was significantly lower in the plasma of patients with active UC (4.2 (2.4) mU/ml; p<0.05 v controls) than in those with inactive UC and controls (10.6 (2.2) and 12.1 (1.7) mU/ml). As shown by western blot, protein levels of tissue transglutaminase and factor XIIIa were unchanged in active UC compared with inactive disease and controls, while the keratinocyte form was reduced in active UC. Tissue transglutaminase and factor XIIIa immunostaining was strongly present in damaged areas colocalising with isopeptide bonds. In contrast, the keratinocyte form was almost absent in active UC and localised in the upper part of the crypts in normal subjects. RT-PCR showed upregulation of tissue transglutaminase mRNA in active UC (320% compared with controls) while keratinocyte transglutaminase gene expression was downregulated in active UC. Conclusions: The results of the present study support the concept that, in the damaged colon, transglutaminases are needed in response to chronic injury and underline the key role of these enzymes in mucosal healing.
2005
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
HUMAN EPIDERMAL-KERATINOCYTES
TISSUE TRANSGLUTAMINASE
FACTOR-XIII
CELL-ADHESION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/464595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact