Non-covalent pi-pi and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and a thermally evaporated sub-monolayer and the following few-layer thin films of similar perylene diimide derivatives: PDI8-CN2 and PDIF-CN2. The molecular influence on the graphene work function was estimated by XPS and UPS analysis and by investigating the surface potentials via scanning Kelvin probe force microscopy. The perfluorinated decoration and the steric interaction in the early stages of the film growth determined a positive work function shift as high as 0.7 eV in the case of PDIF-CN2, with respect to the value of 4.41 eV for the intrinsic graphene. Our results unambiguously highlight the absence of valence band shifts in the UPS analysis, indicating the prevalence of dipolar interactions between the graphene surface and the organic species enhanced by the presence of the fluorine-enriched moieties.

Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives

Aversa Lucrezia;Verucchi Roberto;Cassinese Antonio
2022

Abstract

Non-covalent pi-pi and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and a thermally evaporated sub-monolayer and the following few-layer thin films of similar perylene diimide derivatives: PDI8-CN2 and PDIF-CN2. The molecular influence on the graphene work function was estimated by XPS and UPS analysis and by investigating the surface potentials via scanning Kelvin probe force microscopy. The perfluorinated decoration and the steric interaction in the early stages of the film growth determined a positive work function shift as high as 0.7 eV in the case of PDIF-CN2, with respect to the value of 4.41 eV for the intrinsic graphene. Our results unambiguously highlight the absence of valence band shifts in the UPS analysis, indicating the prevalence of dipolar interactions between the graphene surface and the organic species enhanced by the presence of the fluorine-enriched moieties.
2022
graphene
molecular doping
perylene
XPS
UPS
SKPFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/464837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact