Plant parasitic nematodes are a serious threat to crop production worldwide and their control is extremely challenging. Fungal volatile organic compounds (VOCs) provide an ecofriendly alternative to synthetic nematicides, many of which have been withdrawn due to the risks they pose to humans and the environment. This study investigated the biocidal properties of two fungal VOCs, 1-Octen-3-ol and 3-Octanone, against the widespread root-knot nematode Meloidogyne incognita. Both VOCs proved to be highly toxic to the infective second-stage juveniles (J2) and inhibited hatching. Toxicity was dependent on the dose and period of exposure. The LD50 of 1-Octen-3-ol and 3-Octanone was 3.2 and 4.6 mu L, respectively. The LT50 of 1-Octen-3-ol and 3-Octanone was 71.2 and 147.1 min, respectively. Both VOCs were highly toxic but 1-Octen-3-ol was more effective than 3-Octanone. Exposure of M. incognita egg-masses for 48 h at two doses (0.8 and 3.2 mu L) of these VOCs showed that 1-Octen-3-ol had significantly greater nematicidal activity (100%) than 3-Octanone (14.7%) and the nematicide metham sodium (6.1%). High levels of reactive oxygen species detected in J2 exposed to 1-Octen-3-ol and 3-Octanone suggest oxidative stress was one factor contributing to mortality and needs to be investigated further.
Evaluation of Fungal Volatile Organic Compounds for Control the Plant Parasitic Nematode Meloidogyne incognita
Veronico P;Sasanelli N;Troccoli A;
2023
Abstract
Plant parasitic nematodes are a serious threat to crop production worldwide and their control is extremely challenging. Fungal volatile organic compounds (VOCs) provide an ecofriendly alternative to synthetic nematicides, many of which have been withdrawn due to the risks they pose to humans and the environment. This study investigated the biocidal properties of two fungal VOCs, 1-Octen-3-ol and 3-Octanone, against the widespread root-knot nematode Meloidogyne incognita. Both VOCs proved to be highly toxic to the infective second-stage juveniles (J2) and inhibited hatching. Toxicity was dependent on the dose and period of exposure. The LD50 of 1-Octen-3-ol and 3-Octanone was 3.2 and 4.6 mu L, respectively. The LT50 of 1-Octen-3-ol and 3-Octanone was 71.2 and 147.1 min, respectively. Both VOCs were highly toxic but 1-Octen-3-ol was more effective than 3-Octanone. Exposure of M. incognita egg-masses for 48 h at two doses (0.8 and 3.2 mu L) of these VOCs showed that 1-Octen-3-ol had significantly greater nematicidal activity (100%) than 3-Octanone (14.7%) and the nematicide metham sodium (6.1%). High levels of reactive oxygen species detected in J2 exposed to 1-Octen-3-ol and 3-Octanone suggest oxidative stress was one factor contributing to mortality and needs to be investigated further.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.