During the StratoClim Geophysica campaign, air with total water mixing ratios up to 200 ppmv and ozone up to 250 ppbv was observed within the Asian summer monsoon anticyclone up to 1.7 km above the local cold-point tropopause (CPT). To investigate the temporal evolution of enhanced water vapor being transported into the stratosphere, we conduct forward trajectory simulations using both a microphysical and an idealized freeze-drying model. The models are initialized at the measurement locations and the evolution of water vaporand ice is compared with satellite observations of MLS and CALIPSO. Our results show that these extremely high water vapor values observed above the CPT are very likely to undergo significant further freeze-drying due to experiencing extremely cold temperatures while circulating in the anticyclonic "dehydration carousel".We also use the Lagrangian dry point (LDP) of the merged back-and-forward trajectories to reconstruct the water vapor fields. The results show that the extremely high water vapor mixed with the stratospheric air has a negligible impact on the overall water vapor budget. The LDP mixing ratios are a better proxy for the large-scale water vapor distributions in the stratosphere during this period.

The dehydration carousel of stratospheric water vapor inthe Asian summer monsoon anticyclone

Fabrizio Ravegnani;Francesco D'Amato;Silvia Viciani;
2023

Abstract

During the StratoClim Geophysica campaign, air with total water mixing ratios up to 200 ppmv and ozone up to 250 ppbv was observed within the Asian summer monsoon anticyclone up to 1.7 km above the local cold-point tropopause (CPT). To investigate the temporal evolution of enhanced water vapor being transported into the stratosphere, we conduct forward trajectory simulations using both a microphysical and an idealized freeze-drying model. The models are initialized at the measurement locations and the evolution of water vaporand ice is compared with satellite observations of MLS and CALIPSO. Our results show that these extremely high water vapor values observed above the CPT are very likely to undergo significant further freeze-drying due to experiencing extremely cold temperatures while circulating in the anticyclonic "dehydration carousel".We also use the Lagrangian dry point (LDP) of the merged back-and-forward trajectories to reconstruct the water vapor fields. The results show that the extremely high water vapor mixed with the stratospheric air has a negligible impact on the overall water vapor budget. The LDP mixing ratios are a better proxy for the large-scale water vapor distributions in the stratosphere during this period.
2023
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Istituto Nazionale di Ottica - INO
Asian summer monsoon anticyclone
STRATOCLIM
dehydration
stratospheric water vapor
File in questo prodotto:
File Dimensione Formato  
prod_487459-doc_202543.pdf

accesso aperto

Descrizione: The dehydration carousel of stratospheric water vapor in the Asian summer monsoon anticyclone
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/465083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact