Chemistry Climate Models (CCMs) are essential tools for characterizing and predicting the role of atmospheric composition and chemistry in Earth's climate system. This study demonstrates the use of airborne in situ observations to diagnose the representation of chemical composition and transport by CCMs. Process‐based diagnostics using dynamical and chemical coordinates are presented which minimize the spatial and temporal sampling differences between airborne in situ measurements and CCM grid points. The chosen process is the chemical impact of the Asian summer monsoon (ASM), where deep convection serves as a rapid transport pathway for surface emissions to reach the upper troposphere and lower stratosphere (UTLS). We examine two CCM configurations for their representation of the ASM UTLS using a set of airborne observations from south Asia. The diagnostics reveal good model performance at representing tropospheric tracer distribution throughout the troposphere and lower stratosphere, and excellent representation of chemical aging in the lower stratosphere when chemical loss is dominated by photolysis. Identified model limitations include the use of zonally averaged mole fraction boundary conditions for species with sufficiently short tropospheric lifetimes, which may obscure enhanced regional emissions sources. Overall, the diagnostics underscore the skill of current‐generation models at representing pollution transport from the boundary layer to the stratosphere via the ASM mechanism, and demonstrate the strength of airborne in situ observations toward characterizing this representation.

Evaluating the Model Representation of Asian Summer Monsoon Upper Troposphere and Lower Stratosphere Transport and Composition Using Airborne In Situ Observations

Viciani, Silvia
Investigation
;
D’Amato, Francesco
Investigation
;
Ravegnani, Fabrizio
Investigation
2024

Abstract

Chemistry Climate Models (CCMs) are essential tools for characterizing and predicting the role of atmospheric composition and chemistry in Earth's climate system. This study demonstrates the use of airborne in situ observations to diagnose the representation of chemical composition and transport by CCMs. Process‐based diagnostics using dynamical and chemical coordinates are presented which minimize the spatial and temporal sampling differences between airborne in situ measurements and CCM grid points. The chosen process is the chemical impact of the Asian summer monsoon (ASM), where deep convection serves as a rapid transport pathway for surface emissions to reach the upper troposphere and lower stratosphere (UTLS). We examine two CCM configurations for their representation of the ASM UTLS using a set of airborne observations from south Asia. The diagnostics reveal good model performance at representing tropospheric tracer distribution throughout the troposphere and lower stratosphere, and excellent representation of chemical aging in the lower stratosphere when chemical loss is dominated by photolysis. Identified model limitations include the use of zonally averaged mole fraction boundary conditions for species with sufficiently short tropospheric lifetimes, which may obscure enhanced regional emissions sources. Overall, the diagnostics underscore the skill of current‐generation models at representing pollution transport from the boundary layer to the stratosphere via the ASM mechanism, and demonstrate the strength of airborne in situ observations toward characterizing this representation.
2024
Istituto dei Sistemi Complessi - ISC - Sede Secondaria Sesto Fiorentino
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Chemistry climate model
Asian summer monsoon
Airborne measurements
File in questo prodotto:
File Dimensione Formato  
2024_Smith_D Amato - Evaluating the Model Representation of Asian Summer Monsoon Upper Troposphere and Lower_SMALL.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/465470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact