There has been a great effort towards development of renewable energy systems to combat global warming with significant interest towards research and development of floating offshore wind turbines (FOWTs). With commercial projects such as Hywind Scotland, Hywind Tampen and others, there is a shift of industry attention from bottom-fixed offshore turbines to FOWTs. In this work, we focus on comparing industry standard Potential Flow (PF) methods versus Computational Fluid Dynamics (CFD) solvers for a scaled version of the IEA 15 MW turbine and associated FOWT system. The results from the two solvers are compared/validated using experimental thrust values for the fixed turbine. The motions and the thrust for the FOWT system are then compared for the two solvers along with hydrodynamic properties of the floater hull. The wake features downstream of the turbine are analyzed for the fixed and floating turbine using the CFD solver. The wake from the CFD solver is also compared with a simplified PF model. Finally, a simplified cost-benefit analysis is presented for the two solvers to compare the usefulness and utility of a CFD solver as compared to presently used industry-standard PF methods.

Comparing the Utility of Coupled Aero-Hydrodynamic Analysis Using a CFD Solver versus a Potential Flow Solver for Floating Offshore Wind Turbines

Greco, Marilena
Membro del Collaboration Group
;
2023

Abstract

There has been a great effort towards development of renewable energy systems to combat global warming with significant interest towards research and development of floating offshore wind turbines (FOWTs). With commercial projects such as Hywind Scotland, Hywind Tampen and others, there is a shift of industry attention from bottom-fixed offshore turbines to FOWTs. In this work, we focus on comparing industry standard Potential Flow (PF) methods versus Computational Fluid Dynamics (CFD) solvers for a scaled version of the IEA 15 MW turbine and associated FOWT system. The results from the two solvers are compared/validated using experimental thrust values for the fixed turbine. The motions and the thrust for the FOWT system are then compared for the two solvers along with hydrodynamic properties of the floater hull. The wake features downstream of the turbine are analyzed for the fixed and floating turbine using the CFD solver. The wake from the CFD solver is also compared with a simplified PF model. Finally, a simplified cost-benefit analysis is presented for the two solvers to compare the usefulness and utility of a CFD solver as compared to presently used industry-standard PF methods.
2023
Istituto di iNgegneria del Mare - INM (ex INSEAN)
floating offshore wind turbineCFDpotential-flow methodsrenewable energy;COMPUTATIONAL FLUID-DYNAMICSNUMERICAL-MODELLOADS
File in questo prodotto:
File Dimensione Formato  
energies-16-07833-light.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/465985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact