Most urban greening interventions involve soil de-sealing and management to enhance fertility. Management typically requires translocating fertile topsoil to the site, which comes at great environmental costs. We hypothesized that de-sealed urban soils would undergo an increase of their fertility without exogenous topsoil application. We assessed experimental plots with de-sealed soil with topsoil, and de-sealed soil without topsoil. Both treatments were vegetated with two ornamental shrub species and irrigated. Soil fertility was analyzed by chemical (total and organic carbon) and biological indicators of soils (biological quality index and microbial activities). Since metal contamination is related to urban de-sealed soil, we also monitored the concentration of Zn, Cu and Pb in soil and detected it in plant leaves. The results demonstrate that de-sealed urban soils rapidly restore their biological quality and fertility. Restoration of de-sealing soils can contribute to the recent growing interest reclamation of urban soils for improving the urban environment quality through the restoration of soil functions and related ecosystem services. Overall, the results of this study demonstrate that de-sealed soils can improve their functionality and can contribute to the recent growing interest in reclamation of urban soils for improving the urban environment quality.
Biological Restoration of Urban Soils after De-Sealing Interventions
Anita Maienza
;Fabrizio Ungaro;Silvia Baronti;Francesca Ugolini;Costanza Calzolari
2021
Abstract
Most urban greening interventions involve soil de-sealing and management to enhance fertility. Management typically requires translocating fertile topsoil to the site, which comes at great environmental costs. We hypothesized that de-sealed urban soils would undergo an increase of their fertility without exogenous topsoil application. We assessed experimental plots with de-sealed soil with topsoil, and de-sealed soil without topsoil. Both treatments were vegetated with two ornamental shrub species and irrigated. Soil fertility was analyzed by chemical (total and organic carbon) and biological indicators of soils (biological quality index and microbial activities). Since metal contamination is related to urban de-sealed soil, we also monitored the concentration of Zn, Cu and Pb in soil and detected it in plant leaves. The results demonstrate that de-sealed urban soils rapidly restore their biological quality and fertility. Restoration of de-sealing soils can contribute to the recent growing interest reclamation of urban soils for improving the urban environment quality through the restoration of soil functions and related ecosystem services. Overall, the results of this study demonstrate that de-sealed soils can improve their functionality and can contribute to the recent growing interest in reclamation of urban soils for improving the urban environment quality.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.