The old and challenging problem of dealing with the interaction between condensed matter systems and intense external electric fields are currently evolving in an impressive way. In fact, the growth of the computational resources allows for accurate first-principles numerical calculations showing unprecedented predictive power. We review the phenomenological evidence that has recently emerged from state-of-the-art ab initio molecular dynamics simulations in describing how static electric fields can be exploited to manipulate matter and possibly design novel compounds or materials, obtain new exotic properties, and achieve more efficient reaction yields. In particular, we show the microscopic behavior of simple molecular liquids (water, methanol, and simple mixtures), under the action of static and homogeneous electric fields, showing different shades of the effects produced by the application of the latter. In addition, ab initio molecular dynamics approaches are coupled with advanced free energy methods, that currently represents a unique technique for adequately treating, reproducing, and predicting both molecular mechanisms and chemical reaction networks triggered when matter is exposed to the action of intense electric fields.
Free Energy Calculations of Electric Field-Induced Chemistry
Cassone, Giuseppe
;Saija, Franz;
2019
Abstract
The old and challenging problem of dealing with the interaction between condensed matter systems and intense external electric fields are currently evolving in an impressive way. In fact, the growth of the computational resources allows for accurate first-principles numerical calculations showing unprecedented predictive power. We review the phenomenological evidence that has recently emerged from state-of-the-art ab initio molecular dynamics simulations in describing how static electric fields can be exploited to manipulate matter and possibly design novel compounds or materials, obtain new exotic properties, and achieve more efficient reaction yields. In particular, we show the microscopic behavior of simple molecular liquids (water, methanol, and simple mixtures), under the action of static and homogeneous electric fields, showing different shades of the effects produced by the application of the latter. In addition, ab initio molecular dynamics approaches are coupled with advanced free energy methods, that currently represents a unique technique for adequately treating, reproducing, and predicting both molecular mechanisms and chemical reaction networks triggered when matter is exposed to the action of intense electric fields.File | Dimensione | Formato | |
---|---|---|---|
10.1007@978-3-030-05600-15.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.