In this article, we present an in-situ and operando time-resolved X-ray Absorption Spectroscopy (XAS) technique which exploits a combination of Grazing Incidence XAS (GIXAS) and Fixed Energy X-ray Absorption Voltammetry (FEXRAV), the Grazing Incidence FEXRAV (GI-FEXRAV). A case-study is also outlined. Palladium ultra-low loadings were deposited above Au polycrystalline iso-oriented substrates adopting three different deposition methods: surface-controlled electrochemical methods, direct electrodeposition, and physical vapour deposition (PVD). These catalytical surfaces were prepared for the investigation by GI-FEXRAV of the Pd oxidation/dissolution phenomenon that could occur when the metal is used in the anodic compartment of Direct Alcohol Fuel Cells (DAFCs) or in electrochemical reformers. Moreover, we report a robust, low cost and versatile procedure to obtain wide and flat iso-oriented gold substrates that can mimic monocrystalline gold (1 1 1) in the electrochemical response. The use of GI-FEXRAV for the operando characterization of the catalysts, in conjunction with the designed experimental cell and our flexible Au-based electrochemical substrates show an invaluable potential in the operando study of fundamental phenomena in heterogeneous electrocatalysis model systems and, due to its versatility, paves the way to further studies on a wide selection of electrochemical systems.

In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation

Berretti, Enrico;Montegrossi, Giordano;Lepore, Giovanni Orazio;Innocenti, Massimo;D’Acapito, Francesco;Vizza, Francesco
;
Lavacchi, Alessandro
2024

Abstract

In this article, we present an in-situ and operando time-resolved X-ray Absorption Spectroscopy (XAS) technique which exploits a combination of Grazing Incidence XAS (GIXAS) and Fixed Energy X-ray Absorption Voltammetry (FEXRAV), the Grazing Incidence FEXRAV (GI-FEXRAV). A case-study is also outlined. Palladium ultra-low loadings were deposited above Au polycrystalline iso-oriented substrates adopting three different deposition methods: surface-controlled electrochemical methods, direct electrodeposition, and physical vapour deposition (PVD). These catalytical surfaces were prepared for the investigation by GI-FEXRAV of the Pd oxidation/dissolution phenomenon that could occur when the metal is used in the anodic compartment of Direct Alcohol Fuel Cells (DAFCs) or in electrochemical reformers. Moreover, we report a robust, low cost and versatile procedure to obtain wide and flat iso-oriented gold substrates that can mimic monocrystalline gold (1 1 1) in the electrochemical response. The use of GI-FEXRAV for the operando characterization of the catalysts, in conjunction with the designed experimental cell and our flexible Au-based electrochemical substrates show an invaluable potential in the operando study of fundamental phenomena in heterogeneous electrocatalysis model systems and, due to its versatility, paves the way to further studies on a wide selection of electrochemical systems.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Geoscienze e Georisorse - IGG - Sede Secondaria Firenze
Istituto Officina dei Materiali - IOM -
Avogadro Colloquia 2022, Electrocatalysis, Fuel cells, Palladium, Surface chemistry, XAS
File in questo prodotto:
File Dimensione Formato  
10.1515_pac-2023-1013.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Draft_GI-FEXRAV.pdf

accesso aperto

Descrizione: Original (pre Peer-Review) version
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/467251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact