Delay-Doppler maps (DDMs) are generally the lowest level of calibrated observables produced from global navigation satellite system reflectometry (GNSS-R). A forward model is presented to relate the DDM, in units of absolute power at the receiver, to the ocean surface wind field. This model and the related Jacobian are designed for use in assimilating DDM observables into weather forecast models. Given that the forward model represents a full set of DDM measurements, direct assimilation of this lower level data product is expected to be more effective than using individual specular-point wind speed retrievals. The forward model is assessed by comparing DDMs computed from hurricane weather research and forecasting (HWRF) model winds against measured DDMs from the Cyclone Global Navigation Satellite System (CYGNSS) Level 1a data. Quality controls are proposed as a result of observed discrepancies due to the effect of swell, power calibration bias, inaccurate specular point position, and model representativeness error. DDM assimilation is demonstrated using a variational analysis method (VAM) applied to three cases from June 2017, specifically selected due to the large deviation between scatterometer winds and European Centre for Medium-Range Weather Forecasts (ECMWF) predictions. DDM assimilation reduced the root-mean-square error (RMSE) by 15%, 28%, and 48%, respectively, in each of the three examples.

A Forward Model for Data Assimilation of GNSS Ocean Reflectometry Delay-Doppler Maps

Grieco G.;
2021

Abstract

Delay-Doppler maps (DDMs) are generally the lowest level of calibrated observables produced from global navigation satellite system reflectometry (GNSS-R). A forward model is presented to relate the DDM, in units of absolute power at the receiver, to the ocean surface wind field. This model and the related Jacobian are designed for use in assimilating DDM observables into weather forecast models. Given that the forward model represents a full set of DDM measurements, direct assimilation of this lower level data product is expected to be more effective than using individual specular-point wind speed retrievals. The forward model is assessed by comparing DDMs computed from hurricane weather research and forecasting (HWRF) model winds against measured DDMs from the Cyclone Global Navigation Satellite System (CYGNSS) Level 1a data. Quality controls are proposed as a result of observed discrepancies due to the effect of swell, power calibration bias, inaccurate specular point position, and model representativeness error. DDM assimilation is demonstrated using a variational analysis method (VAM) applied to three cases from June 2017, specifically selected due to the large deviation between scatterometer winds and European Centre for Medium-Range Weather Forecasts (ECMWF) predictions. DDM assimilation reduced the root-mean-square error (RMSE) by 15%, 28%, and 48%, respectively, in each of the three examples.
2021
Istituto di Scienze Marine - ISMAR - Sede Secondaria Napoli
Cyclone Global Navigation Satellite System (CYGNSS)
data assimilation (DA)
delay-Doppler maps (DDMs)
forward model
global navigation satellite system reflectometry (GNSS-R)
GPS
ocean wind
File in questo prodotto:
File Dimensione Formato  
HuangTGRS2021.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.07 MB
Formato Adobe PDF
5.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/467284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact