We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit (QPU) equipped with (nearly) identical qubits. Our starting point is a three qubit design that emulates the well known two qubit swap engine. Similar to standard fridges, the method would allow to cool down a qubit at the expense of heating two other qubits. A minimal modification thereof leads to a more practical three qubit design that allows for enhanced refrigeration tasks, such as increasing the purity of one qubit at the expense of decreasing the purity of the other two. The method is based on the application of properly designed quantum circuits, and can therefore be run on any gate model quantum computer. We implement it on a publicly available superconducting qubit based QPU, and observe a purification capability down to 200 mK. We identify gate noise as the main obstacle towards practical application for quantum computing.

Quantum thermodynamic methods to purify a qubit on a quantum processing unit

Campisi, Michele
2022

Abstract

We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit (QPU) equipped with (nearly) identical qubits. Our starting point is a three qubit design that emulates the well known two qubit swap engine. Similar to standard fridges, the method would allow to cool down a qubit at the expense of heating two other qubits. A minimal modification thereof leads to a more practical three qubit design that allows for enhanced refrigeration tasks, such as increasing the purity of one qubit at the expense of decreasing the purity of the other two. The method is based on the application of properly designed quantum circuits, and can therefore be run on any gate model quantum computer. We implement it on a publicly available superconducting qubit based QPU, and observe a purification capability down to 200 mK. We identify gate noise as the main obstacle towards practical application for quantum computing.
2022
Istituto Nanoscienze - NANO
quantum heat engines; quantum computation; quantum thermodynamics
File in questo prodotto:
File Dimensione Formato  
Solfanelli22AVSQS4.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2201.13319v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/467914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact