Pathogenicity and host-parasite relationships in root-knot disease of celery (Apium graveolens ) caused by Meloidogyne incognita race 1 were studied under glasshouse conditions. Naturally and artificially infected celery cv. D'elne plants showed severe yellowing and stunting, with heavily deformed and damaged root systems. Nematode-induced mature galls were spherical and/or ellipsoidal and commonly contained more than one female, males and egg masses with eggs. Feeding sites were characterized by the development of giant cells that contained granular cytoplasm and many hypertrophied nuclei. The cytoplasm of giant cells was aggregated along their thickened cell walls and consequently the vascular tissues within galls appeared disrupted and disorganized. The relationship between initial nematode population density (Pi) and growth of celery plants was tested in glasshouse experiments with inoculum levels that varied from 0 to 512 eggs and second-stage juveniles (J2) mL-1 soil. Seinhorst's model y = m + (1 – m)zP–T was fitted to height and top fresh weight data of the inoculated and control plants. The tolerance limit with respect to plant height and fresh top weight of celery to M. incognita race 1 was estimated as 0·15 eggs and J2 mL-1 soil. The minimum relative values (m) for plant height and top fresh weight were 0·37 and 0·35, respectively, at Pi = 16 eggs and J2 mL-1 soil. The maximum nematode reproduction rate (Pf/Pi) was 407·6 at an initial population density (Pi) of 4 eggs and J2 mL-1 soil.

Pathogenicity and host-parasite relathionships of the root-knot nematode Meloidogyne incognita on celery.

Vovlas N;Sasanelli N;Troccoli A;
2008

Abstract

Pathogenicity and host-parasite relationships in root-knot disease of celery (Apium graveolens ) caused by Meloidogyne incognita race 1 were studied under glasshouse conditions. Naturally and artificially infected celery cv. D'elne plants showed severe yellowing and stunting, with heavily deformed and damaged root systems. Nematode-induced mature galls were spherical and/or ellipsoidal and commonly contained more than one female, males and egg masses with eggs. Feeding sites were characterized by the development of giant cells that contained granular cytoplasm and many hypertrophied nuclei. The cytoplasm of giant cells was aggregated along their thickened cell walls and consequently the vascular tissues within galls appeared disrupted and disorganized. The relationship between initial nematode population density (Pi) and growth of celery plants was tested in glasshouse experiments with inoculum levels that varied from 0 to 512 eggs and second-stage juveniles (J2) mL-1 soil. Seinhorst's model y = m + (1 – m)zP–T was fitted to height and top fresh weight data of the inoculated and control plants. The tolerance limit with respect to plant height and fresh top weight of celery to M. incognita race 1 was estimated as 0·15 eggs and J2 mL-1 soil. The minimum relative values (m) for plant height and top fresh weight were 0·37 and 0·35, respectively, at Pi = 16 eggs and J2 mL-1 soil. The maximum nematode reproduction rate (Pf/Pi) was 407·6 at an initial population density (Pi) of 4 eggs and J2 mL-1 soil.
2008
PROTEZIONE DELLE PIANTE
Apium graveolens
histopathology
nematode reproduction
root-knot nematode
threshold level
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/46813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact