Bi1.84Pb0.34Sr1.91Ca2.03 Cu3.06Ox bulk superconductor was prepared by hot pressing and pressureless sintering reaching relative density values in the 96-99 and 85-90% range, respectively. The hot-pressed specimens exhibited a textured microstructure with the "c"-axis preferentially aligned parallel to the direction of sintering pressure application, while the plastic flow into the particles, during hot pressing, favours the grain growth in the direction perpendicular to the pressure application. Both density and microstructure texturing results were greatly influenced by sintering temperature and pressure. More specifically for pressureless sintered samples, high cold uniaxial pressure was first applied to prepare highly dense green bodies characterized by unusually high degree of texture orientation. They were subsequently pressureless sintered to form links between grains by the activation of diffusion process and partial melting at the grain boundary. Mechanical characterizations, supported by microstructural evaluations, underline the anisotropic character of the material, its intrinsic brittleness and the low hardness. © 1995.

Microstructural and mechanical characterization of bulk BSCCO (2223) superconductor

Tampieri A.;Celotti G.;Guicciardi o Guizzardi S.;Melandri C.
1995

Abstract

Bi1.84Pb0.34Sr1.91Ca2.03 Cu3.06Ox bulk superconductor was prepared by hot pressing and pressureless sintering reaching relative density values in the 96-99 and 85-90% range, respectively. The hot-pressed specimens exhibited a textured microstructure with the "c"-axis preferentially aligned parallel to the direction of sintering pressure application, while the plastic flow into the particles, during hot pressing, favours the grain growth in the direction perpendicular to the pressure application. Both density and microstructure texturing results were greatly influenced by sintering temperature and pressure. More specifically for pressureless sintered samples, high cold uniaxial pressure was first applied to prepare highly dense green bodies characterized by unusually high degree of texture orientation. They were subsequently pressureless sintered to form links between grains by the activation of diffusion process and partial melting at the grain boundary. Mechanical characterizations, supported by microstructural evaluations, underline the anisotropic character of the material, its intrinsic brittleness and the low hardness. © 1995.
1995
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
BSCCO superconductor
Mechanical properties
Microstructural properties
File in questo prodotto:
File Dimensione Formato  
BSCCOSuperCond_MatChemPhys_1995.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/468961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact