microRNAs (miRNAs) are a class of endogenous 22-25 nt single-stranded RNA molecules that regulate gene expression post-transcriptionally. They are highly conserved among species with distinct temporal and spatial patterns of expression, each of them potentially interacting with hundreds of messenger RNAs. Since miRNAs, like transcription factors (TFs), are trans-acting factors that interact with cis-regulatory elements, they potentially generate a complex combinatorial code. Moreover, as TFs and genes containing binding sites for TFs have a high probability of being targeted by miRNAs, the basic interplay miRNA/TF renders miRNAs key components of gene regulatory networks. Several biological processes, including diseases such as cancer, have been causatively associated to disturbances of miRNAs/TF interplay both in vitro and in vivo. These aspects, cumulatively, indicate that miRNAs and transcription factors have a crucial role in determining cellular behaviour, highlighting the role of small RNA molecules in regulatory mechanisms and indicating other routes in the evolutionary path of gene expression.

microRNA(interference) networks are embedded in the gene regulatory networks

Pitto L;Ripoli A;Simili M;
2008

Abstract

microRNAs (miRNAs) are a class of endogenous 22-25 nt single-stranded RNA molecules that regulate gene expression post-transcriptionally. They are highly conserved among species with distinct temporal and spatial patterns of expression, each of them potentially interacting with hundreds of messenger RNAs. Since miRNAs, like transcription factors (TFs), are trans-acting factors that interact with cis-regulatory elements, they potentially generate a complex combinatorial code. Moreover, as TFs and genes containing binding sites for TFs have a high probability of being targeted by miRNAs, the basic interplay miRNA/TF renders miRNAs key components of gene regulatory networks. Several biological processes, including diseases such as cancer, have been causatively associated to disturbances of miRNAs/TF interplay both in vitro and in vivo. These aspects, cumulatively, indicate that miRNAs and transcription factors have a crucial role in determining cellular behaviour, highlighting the role of small RNA molecules in regulatory mechanisms and indicating other routes in the evolutionary path of gene expression.
2008
Istituto di Fisiologia Clinica - IFC
mRNA
interference
File in questo prodotto:
File Dimensione Formato  
prod_24073-doc_28082.pdf

non disponibili

Descrizione: microRNA(interference) networks are embedded in the gene regulatory networks
Dimensione 614.5 kB
Formato Adobe PDF
614.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/46940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 23
social impact