The article presents a recent update of a comprehensive dataset of long-term series of precipitation data from instrumental observations in the Greater Alpine Region (GAR), that is, the region of Europe including the Alpine mountain range and their nearer surroundings (4°–19° E in longitude and 43°–49° N in latitude). A comparison to different national homogenized datasets is also presented. Results show that in the national homogenized datasets more breaks have been detected due to higher station density. They also demonstrate the necessity of constant exchange with data providers. The resulting trends in all datasets are mainly weak and only a minority of them is statistically significant. In most cases the similarity of statistical index numbers are promising, with, for example, small RMSE between the presented new HISTALP homogenization and the time series of the national homogenized datasets. Nevertheless, for some stations higher differences occur and break signals are not what would be expected due to possible causes in the station history. The differences between the national and the HISTALP new homogenization—due to, for example, different methods used, different points in time when the homogenization took place, different options of data handling (combination of station data, gap filling routines, …) and different reference stations—illustrate the inherent uncertainty unavoidably associated to homogenization and point out the need of careful communication and use of the data. On the other hand, the results highlight the advantage of consistently homogenized datasets, versus the risks associated with mixing results from different homogenizations.

Revisiting HISTALP precipitation dataset

Brunetti M.
Conceptualization
;
Manara V.;Maugeri M.;
2023

Abstract

The article presents a recent update of a comprehensive dataset of long-term series of precipitation data from instrumental observations in the Greater Alpine Region (GAR), that is, the region of Europe including the Alpine mountain range and their nearer surroundings (4°–19° E in longitude and 43°–49° N in latitude). A comparison to different national homogenized datasets is also presented. Results show that in the national homogenized datasets more breaks have been detected due to higher station density. They also demonstrate the necessity of constant exchange with data providers. The resulting trends in all datasets are mainly weak and only a minority of them is statistically significant. In most cases the similarity of statistical index numbers are promising, with, for example, small RMSE between the presented new HISTALP homogenization and the time series of the national homogenized datasets. Nevertheless, for some stations higher differences occur and break signals are not what would be expected due to possible causes in the station history. The differences between the national and the HISTALP new homogenization—due to, for example, different methods used, different points in time when the homogenization took place, different options of data handling (combination of station data, gap filling routines, …) and different reference stations—illustrate the inherent uncertainty unavoidably associated to homogenization and point out the need of careful communication and use of the data. On the other hand, the results highlight the advantage of consistently homogenized datasets, versus the risks associated with mixing results from different homogenizations.
2023
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Alpine region
comparison
CRADDOCK
HISTALP
HOMER
homogenization
MASH
precipitation
File in questo prodotto:
File Dimensione Formato  
INTERNATIONAL_JOURNAL_OF_CLIMATOLOGY_2023_43_7381-7411.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.78 MB
Formato Adobe PDF
8.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/469725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact