We report on novel radiation hard imaging detectors based on diamond electronics. The proposed detectors can be operated at room temperature and are able to detect deep UV photons, X-rays, gamma rays, charged particles and neutrons for a wide range of industrial and research applications as: particle tracking at CERN, beam conditions monitoring for synchrotrons and LINACS, radiotheraphy imaging, excimer laser beam diagnostics etc. State of the-art commercially available photon and particle beam imaging and position detectors are mainly based on silicon, despite its intrinsic limitations. Main limitation of silicon devices is in the analysis of high-power sources as high energy particle and photon beams: the maximum density of energy that can be transferred to the detector without radiation damage is quite low, and the detectors lifetime is limited. To limit radiation damage, a reduced signal to noise ratio and high leakage current, silicon detectors need to be cooled down and cannot operate at room temperature; moreover, silicon detectors are also forced to use attenuators and/or wavelength converters (i.e. fluorescent crystals), so introducing loss factors in terms of spatial resolution. © 2011 IEEE.

Radiation hard imaging detectors based on diamond electronics

Girolami M.;
2011

Abstract

We report on novel radiation hard imaging detectors based on diamond electronics. The proposed detectors can be operated at room temperature and are able to detect deep UV photons, X-rays, gamma rays, charged particles and neutrons for a wide range of industrial and research applications as: particle tracking at CERN, beam conditions monitoring for synchrotrons and LINACS, radiotheraphy imaging, excimer laser beam diagnostics etc. State of the-art commercially available photon and particle beam imaging and position detectors are mainly based on silicon, despite its intrinsic limitations. Main limitation of silicon devices is in the analysis of high-power sources as high energy particle and photon beams: the maximum density of energy that can be transferred to the detector without radiation damage is quite low, and the detectors lifetime is limited. To limit radiation damage, a reduced signal to noise ratio and high leakage current, silicon detectors need to be cooled down and cannot operate at room temperature; moreover, silicon detectors are also forced to use attenuators and/or wavelength converters (i.e. fluorescent crystals), so introducing loss factors in terms of spatial resolution. © 2011 IEEE.
2011
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/470117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact