The design of super-cavitating propellers takes advantage of the development of air cavities on the blades’ surface to reduce drag and, ultimately, increase efficiency. The mechanism of flow modification induced by the development of a cavity on the propeller blades was investigated experimentally via phase-locked laser Doppler velocimetry measurements. A large cavity extending beyond the blades’ trailing edge and enclosing the back of the blades was identified at high loading conditions. A robust methodology to quantitatively analyze the size of the cavity is presented. The analysis of the flow fields showed that, under fully developed cavitation conditions, the acceleration of the axial and tangential flow in the inter-blade region was observed, accompanied by a reduction in tip-vortex development.

Flow and cavity measurements in a super-cavitating propeller

Capone Alessandro
;
Alves Pereira Francisco
;
Di Felice Fabio
2024

Abstract

The design of super-cavitating propellers takes advantage of the development of air cavities on the blades’ surface to reduce drag and, ultimately, increase efficiency. The mechanism of flow modification induced by the development of a cavity on the propeller blades was investigated experimentally via phase-locked laser Doppler velocimetry measurements. A large cavity extending beyond the blades’ trailing edge and enclosing the back of the blades was identified at high loading conditions. A robust methodology to quantitatively analyze the size of the cavity is presented. The analysis of the flow fields showed that, under fully developed cavitation conditions, the acceleration of the axial and tangential flow in the inter-blade region was observed, accompanied by a reduction in tip-vortex development.
2024
Istituto di iNgegneria del Mare - INM (ex INSEAN)
cavitation, laser doppler velocimetry, propeller
File in questo prodotto:
File Dimensione Formato  
Flow and Cavity Measurements in a Super-Cavitating Propeller.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.22 MB
Formato Adobe PDF
8.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/470521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact