Background and Objectives: Spring-assisted surgery is a popular option for the treatment of non-syndromic craniosynostosis. The main drawback of this procedure is the need for a second surgery for spring removal, which could be avoided if a distractor material could be metabolised over time. Iron–Manganese alloys (FeMn) have a good trade-off between degradation rate and strength; however, their biocompatibility is still debated. Materials and Methods: In this study, the neuro-compatibility of Fe-20Mn (wt.%) was assessed using standard assays. PC-12 cells were exposed to Fe-20Mn (wt.%) and stainless steel via indirect contact. To examine the cytotoxicity, a Cell Tox Green assay was carried out after 1, 2, and 3 days of incubation. Following differentiation, a neurite morphological examination after 1 and 7 days of incubation time was carried out. The degradation response in modified Hank’s solution at 1, 3, and 7 days was investigated, too. Results: The cytotoxicity assay showed a higher toxicity of Fe-20Mn than stainless steel at earlier time points; however, at the latest time point, no differences were found. Neurite morphology was similar for cells exposed to Fe-20Mn and stainless steel. Conclusions: In conclusion, the Fe-20Mn alloy shows promising neuro-compatibility. Future studies will focus on in vivo studies to confirm the cellular response to Fe-20Mn.

In Vitro Assessment of the Neuro-Compatibility of Fe-20Mn as a Potential Bioresorbable Material for Craniofacial Surgery

Bregoli C.
;
Fiocchi J.;Biffi C. A.;Tuissi A.
Penultimo
;
2024

Abstract

Background and Objectives: Spring-assisted surgery is a popular option for the treatment of non-syndromic craniosynostosis. The main drawback of this procedure is the need for a second surgery for spring removal, which could be avoided if a distractor material could be metabolised over time. Iron–Manganese alloys (FeMn) have a good trade-off between degradation rate and strength; however, their biocompatibility is still debated. Materials and Methods: In this study, the neuro-compatibility of Fe-20Mn (wt.%) was assessed using standard assays. PC-12 cells were exposed to Fe-20Mn (wt.%) and stainless steel via indirect contact. To examine the cytotoxicity, a Cell Tox Green assay was carried out after 1, 2, and 3 days of incubation. Following differentiation, a neurite morphological examination after 1 and 7 days of incubation time was carried out. The degradation response in modified Hank’s solution at 1, 3, and 7 days was investigated, too. Results: The cytotoxicity assay showed a higher toxicity of Fe-20Mn than stainless steel at earlier time points; however, at the latest time point, no differences were found. Neurite morphology was similar for cells exposed to Fe-20Mn and stainless steel. Conclusions: In conclusion, the Fe-20Mn alloy shows promising neuro-compatibility. Future studies will focus on in vivo studies to confirm the cellular response to Fe-20Mn.
2024
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Lecco
biocompatibility
bioresorbable metals
cell viability
cytotoxicity
Fe-20Mn alloy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/470585
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact