Green chemistry emphasizes the isolation of biologically active compounds from plants and biomass to produce renewable, bio-based products and materials through sustainability and circularity-driven innovation processes. In this work, we have investigated the extraction of rosmarinic acid (RA), a phenolic acid with several biological properties, from aromatic herbs using ultrasounds and low environmental risk natural deep eutectic solvents (NADES). Various solvent mixtures have been investigated, and the parameters influencing the process have been studied by a mixture-process experimental design to identify the optimal RA extraction conditions. The extraction yield has been calculated by HPLC-diode array analysis. The lactic acid:ethylene glycol mixture using an ultrasound-assisted process has been found to be the most versatile solvent system, giving RA yields 127–160% higher than hydroalcoholic extraction (70% ethanol). The deep eutectic solvent nature of lactic acid:ethylene glycol has been demonstrated for the first time by multi-technique characterization (1H-NMR and 13C-NMR, DSC, and W absorption properties). The aqueous raw extract has been directly incorporated into poly(vinyl alcohol) to obtain films with potential antibacterial properties for applications in the field of food and pharmaceutical packaging.

Ecofriendly Preparation of Rosmarinic Acid-poly(vinyl alcohol) Biofilms Using NADES/DES, Ultrasounds and Optimization via a Mixture-Process Design Strategy

Beatrice Campanella;Elisa Passaglia;Francesca Cicogna;Gianluca Ciancaleoni;Emilia Bramanti
2024

Abstract

Green chemistry emphasizes the isolation of biologically active compounds from plants and biomass to produce renewable, bio-based products and materials through sustainability and circularity-driven innovation processes. In this work, we have investigated the extraction of rosmarinic acid (RA), a phenolic acid with several biological properties, from aromatic herbs using ultrasounds and low environmental risk natural deep eutectic solvents (NADES). Various solvent mixtures have been investigated, and the parameters influencing the process have been studied by a mixture-process experimental design to identify the optimal RA extraction conditions. The extraction yield has been calculated by HPLC-diode array analysis. The lactic acid:ethylene glycol mixture using an ultrasound-assisted process has been found to be the most versatile solvent system, giving RA yields 127–160% higher than hydroalcoholic extraction (70% ethanol). The deep eutectic solvent nature of lactic acid:ethylene glycol has been demonstrated for the first time by multi-technique characterization (1H-NMR and 13C-NMR, DSC, and W absorption properties). The aqueous raw extract has been directly incorporated into poly(vinyl alcohol) to obtain films with potential antibacterial properties for applications in the field of food and pharmaceutical packaging.
2024
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto Nazionale di Ottica - INO
NADES, rosmarinic acid, bioactive materials
File in questo prodotto:
File Dimensione Formato  
materials-17-00377.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/471068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact