Two approaches for sub-100 nm patterning are applied to Si/SiGe samples. The first one combines electron beam lithography (EBL) and anisotropic wet etching to fabricate wires with triangular section whose top width is narrower than the beam size. Widths as small as 20 nm on silicon and 60 nm on Si/SiGe heterostructures are obtained. The second lithographic approach is based on the local anodization of an aluminum film induced by an atomic force scanning probe. Using atomic force microscopy (AFM) anodization and selective wet etching, aluminum and aluminum oxide nanostructures are obtained and used as masks for reactive ion etching (RIE). Sub-100 nm wide wires are fabricated on Si/SiGe substrates.
EBL- and AFM-based techniques for nanowires fabrication on Si/sige
2002
Abstract
Two approaches for sub-100 nm patterning are applied to Si/SiGe samples. The first one combines electron beam lithography (EBL) and anisotropic wet etching to fabricate wires with triangular section whose top width is narrower than the beam size. Widths as small as 20 nm on silicon and 60 nm on Si/SiGe heterostructures are obtained. The second lithographic approach is based on the local anodization of an aluminum film induced by an atomic force scanning probe. Using atomic force microscopy (AFM) anodization and selective wet etching, aluminum and aluminum oxide nanostructures are obtained and used as masks for reactive ion etching (RIE). Sub-100 nm wide wires are fabricated on Si/SiGe substrates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


