Moiré superlattices have recently been extensively studied in both electronic and photonic systems, e.g., magic-angle bilayer graphene showing superconductivity and twisted bilayer photonic crystals leading to magic-angle lasers. However, the moiré physics is barely studied in the field of magnonics, i.e., in using spin waves for information processing. In this work, we report magnon flat-band formation in twisted bilayer magnonic crystals at the optimal "magic angle"and interlayer exchange coupling combination using micromagnetic simulations. At the flat-band frequency, magnons undergo a strong two-dimensional confinement with a lateral scale of about 185 nm. The magic-angle magnonic nanocavity occurs at the AB stacking region of a moiré unit cell, unlike its photonic counterpart which is at the AA region, due to the exchange-induced magnon spin torque. The magnon flat band originates from band structure reformation induced by interlayer magnon-magnon coupling. Our results enable efficient accumulation of magnon intensity in a confined region that is key for potential applications such as magnon Bose-Einstein condensation and even magnon lasing.
Magic-angle magnonic nanocavity in a magnetic moiré superlattice
Chen J.;Gubbiotti G.;Wang Z.;
2022
Abstract
Moiré superlattices have recently been extensively studied in both electronic and photonic systems, e.g., magic-angle bilayer graphene showing superconductivity and twisted bilayer photonic crystals leading to magic-angle lasers. However, the moiré physics is barely studied in the field of magnonics, i.e., in using spin waves for information processing. In this work, we report magnon flat-band formation in twisted bilayer magnonic crystals at the optimal "magic angle"and interlayer exchange coupling combination using micromagnetic simulations. At the flat-band frequency, magnons undergo a strong two-dimensional confinement with a lateral scale of about 185 nm. The magic-angle magnonic nanocavity occurs at the AB stacking region of a moiré unit cell, unlike its photonic counterpart which is at the AA region, due to the exchange-induced magnon spin torque. The magnon flat band originates from band structure reformation induced by interlayer magnon-magnon coupling. Our results enable efficient accumulation of magnon intensity in a confined region that is key for potential applications such as magnon Bose-Einstein condensation and even magnon lasing.File | Dimensione | Formato | |
---|---|---|---|
Chen PRB105_094445_2022.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.