We investigate here how the geometric control theory of Basile, Marro and Wonham can be obtained in a Hilbert space context, as the byproduct of the factorization of a spectral density with no zeros on the imaginary axis. We show how controlled invariant subspaces can be obtained as images of orthogonal projections of coinvariant subspaces onto a semiinvariant (markovian) subspace of the Hardy space of square integrable functions analytic in the right half plane. Output nulling subspaces are then related to a particular spectral factorization problem. A similar construction is presented for controllability subspaces, and a new algorithm for the computation of these subspaces is presented.

On a connection between spectral factorization and geometric control theory

Gombani A;
2002

Abstract

We investigate here how the geometric control theory of Basile, Marro and Wonham can be obtained in a Hilbert space context, as the byproduct of the factorization of a spectral density with no zeros on the imaginary axis. We show how controlled invariant subspaces can be obtained as images of orthogonal projections of coinvariant subspaces onto a semiinvariant (markovian) subspace of the Hardy space of square integrable functions analytic in the right half plane. Output nulling subspaces are then related to a particular spectral factorization problem. A similar construction is presented for controllability subspaces, and a new algorithm for the computation of these subspaces is presented.
2002
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
INGEGNERIA BIOMEDICA
realiz. stocastica
spazi di Hilbert
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/47177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact