In recent years, the widespread use of mobile phones has been accompanied by public debate about possible adverse consequences on human health. The auditory system is a major target of exposure to electromagnetic fields (EMF) emitted by cellular telephones; the aim of this study was the evaluation of possible effects of cellular phone-like emissions on the functionality of rat's cochlea. Distortion Products OtoAcoustic Emission (DPOAE) amplitude was selected as cochlea's outer hair cells (OHC) status indicator. A number of protocols, including different frequencies (the lower ones in rat's cochlea sensitivity spectrum), intensities and periods of exposure, were used; tests were carried out before, during and after the period of treatment. No significant variation due to exposure to microwaves has been evidenced.
Effects of 900 MHz electromagnetic fields exposure on cochlear cells' functionality in rats: evaluation of Distortion Product OtoAcoustic Emissions
Parazzini M;Ravazzani P;
2005
Abstract
In recent years, the widespread use of mobile phones has been accompanied by public debate about possible adverse consequences on human health. The auditory system is a major target of exposure to electromagnetic fields (EMF) emitted by cellular telephones; the aim of this study was the evaluation of possible effects of cellular phone-like emissions on the functionality of rat's cochlea. Distortion Products OtoAcoustic Emission (DPOAE) amplitude was selected as cochlea's outer hair cells (OHC) status indicator. A number of protocols, including different frequencies (the lower ones in rat's cochlea sensitivity spectrum), intensities and periods of exposure, were used; tests were carried out before, during and after the period of treatment. No significant variation due to exposure to microwaves has been evidenced.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


