Catalytic CO2 conversion to fuels and chemicals is important for mitigating the climate change and reducing the dependence on fossil resources. In order to achieve this goal on a large industrial level, effective catalysts need to be developed. Among them, gallium nitride (GaN) and related Mg-doped and In-alloyed systems have been proven as efficient materials for the reduction of highly stable CO2 molecules. This work presents a density functional theory (DFT) investigation, performing periodic boundary condition (PBC) calculations which allow to employ a more extended surface for a detailed analysis of the CO2 coverage, and the effect of Mg doping and In alloying on the CO2 adsorption and its conversion to CO. The results show the great potential of GaN(100) surfaces to simultaneously bind and strongly activate multiple CO2 molecules, which is a crucial aspect for an efficient CO2 conversion process. Moreover, the presence of Mg-dopant on the top layer is found to be more beneficial for the CO2 adsorption and activation with respect to both the pristine and In-alloyed system, and this effect is further improved by the inclusion of a second impurity on the top layer. In line with the previous experimental findings, these calculations support the potential of pristine GaN(100) to catalyze the CO2-to-CO reduction. The results presented here offer crucial information for the development of more efficient and selective catalysts for the CO2 reduction.

Gallium Nitride-based Materials as Promising Catalysts for CO2 Reduction: A DFT Study on the Effect of CO2 Coverage and the Incorporation of Mg Doping or Substitutional In

Ritacco I.;Farnesi Camellone M.;
2023

Abstract

Catalytic CO2 conversion to fuels and chemicals is important for mitigating the climate change and reducing the dependence on fossil resources. In order to achieve this goal on a large industrial level, effective catalysts need to be developed. Among them, gallium nitride (GaN) and related Mg-doped and In-alloyed systems have been proven as efficient materials for the reduction of highly stable CO2 molecules. This work presents a density functional theory (DFT) investigation, performing periodic boundary condition (PBC) calculations which allow to employ a more extended surface for a detailed analysis of the CO2 coverage, and the effect of Mg doping and In alloying on the CO2 adsorption and its conversion to CO. The results show the great potential of GaN(100) surfaces to simultaneously bind and strongly activate multiple CO2 molecules, which is a crucial aspect for an efficient CO2 conversion process. Moreover, the presence of Mg-dopant on the top layer is found to be more beneficial for the CO2 adsorption and activation with respect to both the pristine and In-alloyed system, and this effect is further improved by the inclusion of a second impurity on the top layer. In line with the previous experimental findings, these calculations support the potential of pristine GaN(100) to catalyze the CO2-to-CO reduction. The results presented here offer crucial information for the development of more efficient and selective catalysts for the CO2 reduction.
2023
Istituto Officina dei Materiali - IOM -
catalysis
CO
2
reduction
density functional theory
doping-alloying
gallium nitrides
File in questo prodotto:
File Dimensione Formato  
ChemCatChem_am.pdf

Open Access dal 23/11/2023

Descrizione: This is the peer reviewed version of the following article: I. Ritacco, M. Farnesi Camellone, L. Caporaso, H. Detz, V. Butera, ChemCatChem 2023, 15, e202201171, which has been published in final form at https://doi.org/10.1002/cctc.202201171. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/472517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact