The present study aimed at testing the benefits of protecting woodchips with an acrylic crusting product developed for the coal energy industry. In the test carried out, four conical wood chips piles were built, two consisting of fresh biomass, the other two of dry wood chips. A fourth larger pile was built as a reference. One dry and one fresh pile were superficially treated with 25 kg of protective acrylic solution diluted in 250 L of water, providing an average application of coating agent of approximately 85 g m−2, while the other two worked as controls. To monitor the piles’ temperature variation, thermal sensors were placed in the inner part of the five piles during their construction. Moisture content (MC) and dry matter (DM) variations in woodchip piles were recorded. The piles treated with the coating agent did not show any significant differences with the untreated piles: in wet material, the protective film slightly reduced the moisture dispersal from the pile from evaporation rather than limiting water intake from rain; in dry material, this confirms the inability of the coating agent to limit water intake from rainfall.

Evaluation of the Effect of a Spray Coating Applied on Open-Air-Stored Woodchips

Picchi G.
Primo
;
Nati C.
Secondo
;
Brilli L.
Penultimo
;
2024

Abstract

The present study aimed at testing the benefits of protecting woodchips with an acrylic crusting product developed for the coal energy industry. In the test carried out, four conical wood chips piles were built, two consisting of fresh biomass, the other two of dry wood chips. A fourth larger pile was built as a reference. One dry and one fresh pile were superficially treated with 25 kg of protective acrylic solution diluted in 250 L of water, providing an average application of coating agent of approximately 85 g m−2, while the other two worked as controls. To monitor the piles’ temperature variation, thermal sensors were placed in the inner part of the five piles during their construction. Moisture content (MC) and dry matter (DM) variations in woodchip piles were recorded. The piles treated with the coating agent did not show any significant differences with the untreated piles: in wet material, the protective film slightly reduced the moisture dispersal from the pile from evaporation rather than limiting water intake from rain; in dry material, this confirms the inability of the coating agent to limit water intake from rainfall.
2024
Istituto per la BioEconomia - IBE
wood chips; storage; fuel quality; moisture content; energy content
File in questo prodotto:
File Dimensione Formato  
resources-13-00058.pdf

accesso aperto

Licenza: Creative commons
Dimensione 6.14 MB
Formato Adobe PDF
6.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/472520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact