Herein, we present a novel ruthenium(II)-perylene dyad (RuPDI-Py) that combines the photophysical properties of pyrrolidine-substituted perylene diimide (PDI-Py) and the ruthenium(II) polypyridine complex [Ru(phen)3]2+. A comprehensive study of excited-state dynamics was carried out using time-resolved and steady-state methods in a dimethyl sulfoxide solution. The RuPDI-Py dyad demonstrated excitation wavelength-dependent photophysical behavior. Upon photoexcitation above 600 nm, the dyad exclusively exhibits the near-infrared (NIR) fluorescence of the 1PDI-Py state at 785 nm (τfl = 1.50 ns). In contrast, upon photoexcitation between 350 and 450 nm, the dyad also exhibits a photoinduced electron transfer from the {[Ru(phen)3]2+} moiety to PDI-Py, generating the charge-separated intermediate state {Ru(III)-(PDI-Py)•−} (4 μs). This state subsequently decays to the long-lived triplet excited state 3PDI-Py (36 μs), which is able to sensitize singlet oxygen (1O2). Overall, tuning 1O2 photoactivation or NIR fluorescence makes RuPDI-Py a promising candidate for using absorbed light energy to perform the desired functions in theranostic applications.

Modulation of the Excited States of Ruthenium(II)-perylene Dyad to Access Near-IR Luminescence, Long-Lived Perylene Triplet State and Singlet Oxygen Photosensitization

Ventura, Barbara;
2024

Abstract

Herein, we present a novel ruthenium(II)-perylene dyad (RuPDI-Py) that combines the photophysical properties of pyrrolidine-substituted perylene diimide (PDI-Py) and the ruthenium(II) polypyridine complex [Ru(phen)3]2+. A comprehensive study of excited-state dynamics was carried out using time-resolved and steady-state methods in a dimethyl sulfoxide solution. The RuPDI-Py dyad demonstrated excitation wavelength-dependent photophysical behavior. Upon photoexcitation above 600 nm, the dyad exclusively exhibits the near-infrared (NIR) fluorescence of the 1PDI-Py state at 785 nm (τfl = 1.50 ns). In contrast, upon photoexcitation between 350 and 450 nm, the dyad also exhibits a photoinduced electron transfer from the {[Ru(phen)3]2+} moiety to PDI-Py, generating the charge-separated intermediate state {Ru(III)-(PDI-Py)•−} (4 μs). This state subsequently decays to the long-lived triplet excited state 3PDI-Py (36 μs), which is able to sensitize singlet oxygen (1O2). Overall, tuning 1O2 photoactivation or NIR fluorescence makes RuPDI-Py a promising candidate for using absorbed light energy to perform the desired functions in theranostic applications.
2024
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Ruthenium(II), perylene, dyad, NIR luminescence, photoinduced electron transfer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/472902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact